摘要
针对六足机器人步行时由于半球形足端滚动影响造成的机器人躯体轨迹偏差问题,提出一种步态修正算法.指出大半径半球形结构作为六足机器人的足端设计方案所具备的优势及其在支撑相中存在的足端滚动问题.通过提出理想立足点的概念,对三维空间内机器人单腿运动学模型进行修正,对理想立足点与实际立足点之间的偏差量进行分析,建立全方位步行时理想立足点与单腿各关节转角之间的运动学正/逆解关系.通过仿真对比分析修正前后单腿根关节运动轨迹,验证修正算法的有效性.实验结果表明,修正算法既能够更好地避免足端与地面产生相对滑动从而显著改善机器人步行时的方向偏离问题,又能够在一定程度上降低系统能耗.
Considered the body misplaced problem caused by the rolling effect of semi-round rigid feet during hexapod robot's walking period, a gait correction algorithm was established. The main benefits of the large radius semi-round structure were proposed, while the rolling effect during the supporting phase was illustrated. The concept of ideal foothold was put forward, with the 3D deviation between the ideal foothold and real foothold deduced by correcting the single leg kinematic model. The forward/inverse kinematic solutions between the ideal foothold and the joints' angular vectors were formulated. The root joint trajectory of single leg generated in simulation environment verifies the effectiveness of the algorithm. A series of walking experiments results show that the correction algorithm could improve the walking orientation deviation problem and the energetic cost obviously by avoiding foot slippage phenomenon as much as possible.
出处
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2013年第5期768-774,共7页
Journal of Zhejiang University:Engineering Science