期刊文献+

基于厚壁工件X射线实时成像的焊缝缺陷自动检测 被引量:12

Automatic weld defect detection based on X-ray images of thick-wall workpieces
原文传递
导出
摘要 基于X射线成像的焊缝缺陷自动检测技术对提高工业射线检测的自动化水平具有重要意义。焊缝缺陷在线连续检测的实时性要求较高,随着工件厚度的增加,其焊缝X射线实时图像的信噪比变得很低,使得已有的处理算法难以在满足实时性的同时,有效处理缺陷误检与漏检之间的矛盾。针对这些问题,在分析了传统方法在厚壁工件X射线图像焊缝缺陷自动检测中存在的问题基础上,对传统方法进行了改进,提出了双阈值背景消除法和平行焊接方向波形分析法,然后利用所提出算法之间的冗余性和互补性,融合多种分割结果以解决缺陷误检与漏检之间的矛盾。试验结果表明:所提出的缺陷自动检测方法能够在满足实时性要求的同时,实现缺陷检出,有效避免误检。 The technology of automatic weld defect detection based on X ray imaging plays an important role in improving the automatic level of industrial radiography inspection. The signal to noise ratio of the X ray real time weldment image decreases with increasing weldment thickness, which makes the current method fail to deal with the conflict of reducing false alarms and avoiding missed detections of weld defects while meeting the requirement of on line continuous detection efficiency. Based on the analysis of drawbacks in traditional background subtraction and grey level profile analysis method, information fusion of multiple image segmentation algorithms was developed to detect weld defects. Double threshold background subtraction and grey level analysis parallel to weld direction were proposed with the segmentation results using different algorithms then fused to deal with the conflict of false alarms and missed detections. Experimental results show that the proposed method can meet the requirement of on-line continuous detection efficiency of weld defects and automatically detect weld defects of thick-wall weldments.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第2期150-154,共5页 Journal of Tsinghua University(Science and Technology)
基金 中国焊接学会创新思路预研奖学金资助项目 教育部高等学校博士学科点专项科研基金资助项目(20090002110080)
关键词 X射线实时成像 厚壁焊件 缺陷检测 图像处理 X-ray real-time imaging thick-wall weldment defect detection image processing
  • 相关文献

参考文献13

  • 1Daum W,Rose P,Heidt H,et al. Automatic recognition ofweld defects in X-ray inspection [J]. British Journal ofNDT, 1987,29(3): 79 - 82. 被引量:1
  • 2Gayer A,Saya A, Shiloh A. Automatic recognition ofwelding defects in real-time radiography [J]. NDTInternational , 1990,23(3) : 131-136. 被引量:1
  • 3Kaftandjian V, Dupuis O,Babot D,et al. Uncertaintymodelling using Dempster - Shafer theory for improvingdetection of weld defects [J]. Pattern Recognition Letters ,2003,24(1 -3): 547 -564. 被引量:1
  • 4邵家鑫,都东,朱新杰,高志凌,王晨.基于X射线数字化图像处理的双面焊焊缝缺陷检测[J].焊接学报,2010,31(11):21-24. 被引量:19
  • 5Warren T,JIA Weini. An automated radiographic NDTsystem for weld inspection - Flaw detection [Jj. NDT &- EInternational , 1998,31(3): 183 - 192. 被引量:1
  • 6Padua G. X,Silva R R,Siqueira M H S,et al. Classificationof welding defects in radiographs using transversal profiles tothe weld seam [C]//16 th World Conference onNondestructive Testing. Montreal,2004. 被引量:1
  • 7Lawson S W. Automatic defect detection in industrialradioscopic and ultrasonic images [D]. London: University ofSurrey, 1996. 被引量:1
  • 8罗爱民..基于数学形态学的射线检测数字图像处理技术[D].四川大学,2007:
  • 9王明泉,柴黎.改进的分水岭算法在焊接图像中的应用[J].焊接学报,2007,28(7):13-16. 被引量:10
  • 10杨坪,蒋应田,洪振鹏,张建成,张建筑.数字射线图像缺陷的Canny算子边缘检测[J].无损检测,2008,30(7):422-425. 被引量:3

二级参考文献15

  • 1杨坪,蒋应田,洪振鹏,张建成,张建筑.数字射线图像缺陷的Canny算子边缘检测[J].无损检测,2008,30(7):422-425. 被引量:3
  • 2侯润石,都东,邵家鑫,王力,常保华.基于局部曲面重构的焊缝X射线图像缺陷分割技术[J].无损检测,2008,30(8):533-535. 被引量:4
  • 3[1]John Canny.A computational approach to edge detection[J].IEEE Trans Pattern Analysis and Machine Intelligence,1986,PAMI-8(1):679-697. 被引量:1
  • 4[2]Kenneth R Castleman.数字图像处理技术[M].北京:电子工业出版社,1998. 被引量:1
  • 5Lashkia V. Defect detection in X-ray images using fuzzy reasoning [J]. Image and Vision Computing, 2001, 19(5) : 261 -269. 被引量:1
  • 6Guo Linfeng,Opas Chutatape. Influence of discretization in image space on hough transform[ J]. Pattern Recognition, 1999, 32 (4) : 635 -644. 被引量:1
  • 7Warren T, Jia Weini. An automated radiographic NDT system for weld inspection-Flaw detection[ J ]. NDT & E international 1998, 31(3) : 183 -192. 被引量:1
  • 8Daum W, Rose P, Heidt H, et al. Automatic recognition of weld defects in X-ray inspection[ J]. British Journal of NDT, 1987, 29 (3) : 79 -82. 被引量:1
  • 9Kehoe A, Parker G A. Image processing for industrial radiographic inspection: image enhancement [ J ]. British Journal of NDT, 1990, 32(4) : 183 -190. 被引量:1
  • 10Yang X Y,Liu J.Unsupervised texture segmentation with one-step means shift and boundary markov random fields[J].Pattern Recognition Letters,2001,22(10):1073-1081. 被引量:1

共引文献28

同被引文献80

引证文献12

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部