期刊文献+

一类不确定机械系统的双调节自适应模糊建模与鲁棒控制 被引量:4

Adaptive Fuzzy Modeling and Robust Control with Double Adjustment for a Class of Uncertain Mechanical System
下载PDF
导出
摘要 针对含摩擦环节的不确定机械动力系统,建立摩擦力模型及其相应的控制补偿策略一直是人们所关注问题。由于摩擦力所固有的非线性及不确定特征,使得用传统的数学建模与控制补偿方法难以达到满意的系统性能要求。考虑到传统摩擦力模型的缺陷以及不具备自学习和自适应环境的能力,提出用自适应模糊建模技术逼近摩擦动力系统并将辨识结果用在控制器设计中。在用自适应模糊技术建立摩擦模型过程中,自适应参数由跟踪误差和摩擦建模误差共同调节,这加快跟踪误差的收敛速度和模糊建模的逼近精度。在控制器设计方面,考虑到系统存在摩擦建模误差,采用鲁棒控制器设计方案并运用李雅普诺夫稳定性分析证明闭环系统跟踪误差的有界性。数值仿真和试验结果验证了该方法的有效性和实用性。 Modeling and control compensation of fi'iction force is a challenging task for mechanical systems with uncertain friction.The traditional way, such as mathematical approaches, is found quite difficult to achieve satisfactory performances due to some nonlinearity and uncertainties of the system. In view of the defects and lack of self-learning ability and environmental adaptability of conventional friction models. It aims to develop adaptive fuzzy modeling techniques to characterize the friction dynamics, which can then be employed in a feed-forward compensation control, where both the tracking error and the friction modeling error are utilized to adjust adaptive parameters. An adaptive version of the fuzzy feed-forward compensation control law is employed in the control system. A theoretical result on estimates of error bounds for closed-loop systems is established by the Lyapunov stability theory. Simulation and experiment results demonstrate the usefulness and effectiveness of our proposed control strategy.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2013年第9期61-68,共8页 Journal of Mechanical Engineering
基金 国家自然科学基金(51275085 51135003) 国家重点基础研究发展计划(973计划 2009CB320601) 沈阳市科技基金(F10-205-1-40 F12-175-9-00) 中央高校基本科研业务费专项基金(N110503001)资助项目
关键词 不确定摩擦 自适应 模糊建模 鲁棒控制 Uncertain friction Adaptive Fuzzy modeling Robust control Uncertain friction Adaptive Fuzzy modeling Robust control
  • 相关文献

参考文献5

二级参考文献64

  • 1袭著燕,路长厚,张建川,潘伟.基于小波分析的交流伺服电流中摩擦影响信息特征提取的研究[J].机械工程学报,2005,41(6):39-43. 被引量:8
  • 2Armstrong-Helouvry B, Dupot P, Wit D C C. A survey of models, analysis tools and compensation methods for control of machines with friction. Automatica, 1994, 30(7): 1083-1138. 被引量:1
  • 3Garcia C. Comparison of friction models applied to a control valve. Control Engineering Practice, 2008, 16(10): 1231-1243. 被引量:1
  • 4Selmic R R, Lewis F L. Neural-network approximation of piecewise continuous functions: application to friction compensation. IEEE Transactions on Neural Networks, 2002, 13(3): 745-751. 被引量:1
  • 5Wang Y F, Wang D H, Chai T Y. Modeling and control compensation of nonlinear friction using adaptive fuzzy systems. Mechanical Systems and Signal Processing, 2009, 23(8): 2445-2457. 被引量:1
  • 6Kim Y H, Frank L L, Abdallah C T. A dynamic recurrent neural network based adaptive observer for a class of nonlinear systems. Automatica, 1997, 33(8): 1539-1543. 被引量:1
  • 7Wang L X. Stable adaptive fuzzy control of nonlinear systems. IEEE Transactions on Fuzzy Systems, 1993, 1(2): 146-155. 被引量:1
  • 8Chang Y C. Robust tracking control for nonlinear MIMO systems via fuzzy approaches. Automatica, 2000, 36(10): 1535-1545. 被引量:1
  • 9CANUDAS C, OLSSON H, ASTROM K J, et al. A new model for control of systems with friction[J]. IEEE Transaction on Automatic Control, 1995, 40(3): 419-425. 被引量:1
  • 10POPOVIC M R. Friction modeling and control[D]. The University of Toronto, Canada, 1996. 被引量:1

共引文献36

同被引文献21

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部