期刊文献+

群体智能算法搜索策略的性质及对停滞现象的影响 被引量:10

The property of search strategies of swarm intelligent algorithms and their influences on stagnation
原文传递
导出
摘要 群体智能算法模拟生物进化或动物群体协作的搜索机制,其目标是快速有效地搜索复杂优化问题的解空间,寻求全局最优解.本文通过对群体智能算法的搜索机理进行分析,根据在搜索过程中解集内部结构变化的性质定义了解集多样度,并在此基础上研究了两种基本的搜索策略——多样化搜索和集中化搜索对解集进化过程中的停滞性的影响,证明了集中化搜索不可避免地使解集中的候选解逐渐趋于单一,是导致算法停滞收敛的主要原因;而多样化搜索能从任何候选解出发搜索到整个编码空间中的任一个点,即整个空间是多样化搜索的可达域,但将使算法不收敛.本文采用三类典型的群体智能算法:遗传算法、蚁群算法和粒子群算法进行了实验,验证了上述分析结论的正确性. Swarm intelligent algorithms are derived from the simulation of natural evolution or collective behavior of animals to seek solutions of complicated optimization problems by exploring and exploiting the search space efficiently and effectively. Through the analysis on the search characteristics of swarm intelligent algorithms, the concept of solution set diversity is introduced in this paper according to the infrastructural changes of solution sets in search processes. Two categories of fundamental search strategies, i.e. the diversification search and the intensification search, are then defined and their influences on the stagnation of solution sets evolution are investigated on the basis of the solution set diversity. It is proved in this paper that an intensification strategy inevitably leads candidates solution to a single solution, which is one of the main sources of stagnation; while a diversification strategy is able to reach any point of the coding space from each initial candidate solution, i.e., the whole searching space is the reachable region of the diversification strategy, but the convergence of the algorithm cannot be guaranteed. Three popular swarm intelligent algorithms, i.e. the canonical generic algorithm, the ant colony system and the discrete particle swarm optimization, are tested with a benchmark problem, and the results support the theoretical conclusions.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2013年第6期1587-1595,共9页 Systems Engineering-Theory & Practice
基金 国家863计划项目(2006AA04Z184) 河海大学常州校区博士启动基金(XZX/09B005-06) 江苏省输配电装备技术重点实验室开放基金(2010JSSPD06)
关键词 群体智能算法 集中化搜索 多样化搜索 停滞现象 swarm intelligent algorithms intensification search diversification search stagnation
  • 相关文献

参考文献15

  • 1De Castro L N. Fundamentals of natural computing: An overview[J]. Physics of Life Reviews, 2007, 4(1): 1-36. 被引量:1
  • 2Chang P C, Huang W H, Ting C J. Dynamic diversity control in genetic algorithm for mining unsearched solution space in TSP problems[J]. Expert Systems with Applications, 2010, 37(3): 1863-1878. 被引量:1
  • 3Nakamichi Y, Arita T. Diversity control in ant colony optimization[J]. Artificial Life and Robotics, 2004, 7(4): 198-204. 被引量:1
  • 4Jiang M, Luo Y P, Yang S. Stagnation analysis in particle swarm optimization[C]// Proc of the 2007 IEEE Swarm Intelligence Symposium, Honolulu, HI, IEEE Press, 2007:92- 99. 被引量:1
  • 5Chen J, Xin B, Peng Z H, et al. Optimal contraction theorem for exploration-exploitation tradeoff in search and optimization[J]. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2009, 39(3): 680-691. 被引量:1
  • 6Ursem R K. Diversity-guided evolutionary algorithms[J]. Parallel Problem Solving from Nature VII, Springer- Verlag LNCS, 2002, 2439: 462-471. 被引量:1
  • 7Riget J, Vesterstr0m J S. A diversity-guided particle swarm optimizer -- The ARPSO[R]. EVALife Technical Report 2002-02, Department of Computer Science, University of Aarhus, 2002. 被引量:1
  • 8邓可,林杰,张鹏.基于信息熵的异类多种群蚁群算法[J].计算机工程与应用,2008,44(36):16-19. 被引量:10
  • 9Olorunda O, Engelbrecht A P. Measuring exploration exploitation in particle swarms using swarm diversity[C]// IEEE Congress on Evolutionary Computation, Hong Kong, IEEE Press, 2008: 1128-1134. 被引量:1
  • 10Randall M. Search space reduction as a tool for achieving intensification and diversification in ant colony opti- misation[J]. Advances in Applied Artificial Intelligence, Springer-Verlag LNCS, 2006, 4031:254 -261. 被引量:1

二级参考文献12

  • 1章春芳,陈崚,陈娟.求解频率分配问题的自适应的多种群蚁群算法.[J].小型微型计算机系统,2006,27(5):837-841. 被引量:11
  • 2Dorigo M, Maniezzo V, Colorni A.Ant system : Optimization by a colony of cooperating agents[J].IEEE Transactions on SMC, 1996, 26( 1 ) : 29-41. 被引量:1
  • 3Bullnheimer B,Hartl R F,Strauss C.A new rank based version of the ant system-A computational study[J].CEJOR, 1999,7:25-38. 被引量:1
  • 4Stutzle T.Parallelization strategies for ant colony optimization[C]// Eiben A E,Back T,Schoenauer M,et al.LNCS:Parallel Problem Solving from Nature-PPSN V.Berlin:Springer-Verlag,1998:722-731. 被引量:1
  • 5Stutzle T,Hoos H H.Max-min ant system[J].Journal of Future Generation Computer Systems,2000,16(9):889-914. 被引量:1
  • 6Talbi E G,Roux O,Fonlupt C,et al.Parallel ant colonies for combinatorial optimization problems[C]//Rolim J.LNCS:Parallel and Distributed Processing, 11 IPPS/SPDP'99 Workshops.Berlin : Springer, 1999: 239-247. 被引量:1
  • 7Chug Shu-chuan,Riddick J F,Pan Jeng-shyang.Ant colony system with communication strategies[J].Information Science,2004,167(124). 被引量:1
  • 8Gambardella L M,Taillard E,Agazzi G.MACS-VRPTW:A multiple ant colony system for vehicle routing problems with time windows, Technical Report Idsia IDSIA-06-99 LUGANO [R].Switzerland, 1999. 被引量:1
  • 9Middendorf M,Reischle F,Schmeck H.Muhi colony ant algorithms[J]. Heuristics, 2002,8 ( 3 ) : 305-320. 被引量:1
  • 10Middendorf M, Reischle F, Schmeck H.Information exchange in multi colony ant algorithms[C]//Rolim J.LNCS:Parallel and Distributed Computing,Proceedings of the 15 IPDPS 2000 Workshops,Third Workshop on Biologically Inspired Solutions to Parallel Processing Problems (BioSP3), Mai 1 5,2000, Cancun, Mexlco.Berlin: Springer-Verlag, 2000: 645-652. 被引量:1

共引文献9

同被引文献85

引证文献10

二级引证文献139

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部