期刊文献+

柯西定理的两种证明方法分析 被引量:1

下载PDF
导出
摘要 柯西定理(柯西中值定理)指的是高等数学中用于求极限和证明不等式、等式的各种性质的微分学基本定理,所以我们还把它叫做微分中值定理。在数学中的微分领域,柯西定理起着十分重要的作用,解决了许多微分方面的难题。柯西中值定理还可看作是拉格朗日中值定理的推广,因为在柯西中值定理中,若取g(x)=x时,则其结论形式和拉格朗日中值定理的结论形式相同。为了更好的对解决一些微分方面的问题,加深人们对柯西定理的理解,本文对柯西定理的两种证明方法进行了分析。
作者 刘鑫
出处 《神州》 2013年第16期197-198,共2页
  • 相关文献

参考文献4

二级参考文献5

共引文献9

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部