摘要
分块矩阵的广义逆问题在自动控制领域里有重要的作用,而反三角分块矩阵[C A B O]的群逆存在性和表达式一直是一个未解决的问题.令K是体,Km×n表示K上所有m×n矩阵的集合,M=A[X+YB A B O]是K上一类分块矩阵,其中A,B,X,Y∈Kn×n.利用矩阵的分解形式,在矩阵A群逆存在,AX=XA,rank(A)=rank(AX)的条件下,得到了M群逆存在的充分必要条件以及群逆存在时的表达式.
The generalized inverse in block matrix plays an important role in automatic control domain, while the existence and representation of group inverse for anti-triangular block matrix [CA BO] is not yet solved up to now.Let K be a skew filed, Kn×n be the set of all matrix over the K and M =[AX+YB B A O] be a class of block matrix,where A ,B ,X, Y ∈Kn×n . Using the decomposition form of the matrix, necessary and sufficient conditions about the existence of group inverse of M are obtained under the cases : the group inverse of A exists, AX = XA, rank (A) = rank(AX). When the group inverse of M exists, the representation of group inverse for M is given.
出处
《哈尔滨工程大学学报》
EI
CAS
CSCD
北大核心
2013年第5期658-661,共4页
Journal of Harbin Engineering University
基金
黑龙江省自然科学基金资助项目(59110120002)
关键词
体
分块矩阵
群逆
值域
反三角
skew filed
block matrix
group inverse
range
anti-triangular