期刊文献+

一类高阶线性差分方程的全局稳定性 被引量:4

Global asymptotic stabi1ity of a higher-order linear difference equation
下载PDF
导出
摘要 研究了一类高阶线性差分方程yn+1=α+a1yn+a2yn-1+…+akyn-k+1,n=0,1,2,…,其中k是正整数α,a1,a2,…,ak参数和初始值y-k+1,y-k+2,…,y0为非负实数.给出一个的充分条件,在该条件下考察该差分方程非负解的收敛性、有界性等问题. In this paper, the authors investigate the higher-order linear difference equation yn+1=a+a1yn+a2yn-1+…+akyn-k+1,n=0,1,2…, where k is a nonnegative integer, the parametersa,a1,a2,…,ak and the initial conditions y-k+1,y-k+2,…,y0, yo are nonnegative real numbers. The sufficient condition for this equation is obtained here in the paper. Under a sufficient condition, we investigate the convergence and the boundedness of the nonnegative solutions of differential equations.
出处 《广西工学院学报》 CAS 2013年第2期32-35,共4页 Journal of Guangxi University of Technology
基金 国家自然科学基金项目(11161029) 广西自然科学基金项目(2010GXNSFA013109 2010GXNSFA013106 2013GXNSFBA019020 2013GXNSFAA019001) 广西教育厅科学基金项目(200911MS298 200911MS212) 广西工学院科学基金项目(1166218)资助
关键词 线性差分方程 收敛 有界性 linear difference equation convergence boundedness
  • 相关文献

参考文献9

  • 1王琦,严可颂,韩松,尤卫玲.一类线性差分方程的动力学[J].广西工学院学报,2009,20(3):50-52. 被引量:1
  • 2Mehdi Dehghan. Reza Mazrooei-Sebdani, Some results about the global attractivity of bounded solutions of difference equations with applications to periodic solutions[J]. Chaos, Solitons and Fractals, 2007, 32: 1398-1412. 被引量:1
  • 3Chatterjee E. Grove E.A. Y. Kostrov,et al. On the Trichotomy Character of x[J]. J. Diff. Equ. Appl., 2003, 9 ' ' A +Bxn+x2 (12): 1113-1128. 被引量:1
  • 4Mehdi Dehghan. Reza Mazrooei-Sebdani,Dynamics of [J]. Applied Mathematics and Computation, 2007, 185: 464-472. 被引量:1
  • 5Grove E.A. , Ladas G. , Predescu M. ,et al. On the Global character of the Difference Equation xn[J]. J. Diff. A +x_ Equ. Appl., 2003, 9(2): 171-199. 被引量:1
  • 6Palladino F. J.. Difl'erence inequalities, comparison tests, and some consequences[JJ. Involve J. Math., 2008, 1 : 91-100. 被引量:1
  • 7Wang Changyou, Wang Shu, Wang Wei. Global asymptotic stability of equilibrium point for a family of rational difference equations? [J. Applied Mathematics Letters, 201 l, 24(5): 714-718. 被引量:1
  • 8Sun Taixiang, Xi Hongjian, He Qiuli. On boundedness of the difference equation with period-k coefficients [J]. Xn--s+l Applied Mathematics and Computation, 2011,217(12,15) : 5994-5997. 被引量:1
  • 9I Abdullah Selquk Kurbanl, Cengiz inar, Ibrahim Yalinkaya. On the behavior of positive solutions of the system of rational differenceequations [J]. Mathematical and Computer Modeling, 2011, 53(5-6) : 1261-1267. 被引量:1

二级参考文献8

  • 1Stevo Stevic'. Boundedness character of a class of difference equations[J]. Nonlinear Analysis, 2009 (70) :839-848. 被引量:1
  • 2M. R. S. Kulenovic, G. Ladas. Dynamics of second order rational difference equations with open problems and conjectures[M]. Chapman & Hall/CRC Press, 2001. 被引量:1
  • 3Wang Tong Li, Hong Rui Sun. Dynamics of a rational difference equation[J]. Appt. Math. Comput, 2005 (163):577-591. 被引量:1
  • 4E. A. Grove, G. Ladas, M. Predescu, et al. On the global character of the difference equation xn+1 = (α+γxn-(2k+1)+δxn-2l)/(A+xn-2l) [J]. Joural of Difference Equations and Applications, 2003,9 (2) : 171 - 199. 被引量:1
  • 5E. Chattel-joe, E. A. Grove, Y. Kostrov,et al. On the Trichotomy Character of Xn+1= (α+γxn-1)/(A+ Bxn+xn-2)[J]. Joural of Difference Equations and Applications, 2003, 9(12):1113-1128. 被引量:1
  • 6Qi Wang, Fanping Zeng, Gengrong Zhang, et al. On the global character of the difference equation xn+1 = (α+ B1axn-1 + B3xn-3 + … + B2k+1xn-2k-1) /( A + B2xn-2 + B4xn-4 + … + B2kxn-2k) [J]. Joural of Difference Equations and Applications, 2006,12 (5) : 399-417. 被引量:1
  • 7R. Devault, C. Kent, W. Kosmala. On the recurisive sequence xn+1 = p+xn-m/xn [J]. Joural of Difference Equations and Applications, 2003,9 (80) : 721-730. 被引量:1
  • 8G. Papaschinoponlos,B. K. Papadopoulos. On teh fuzzy difference equation xn+1 = A + xn/xn-m [ J ]. Fuzzy Sets and Systems, 2002 (129) :73-81. 被引量:1

同被引文献21

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部