期刊文献+

基于SVR算法的林地土壤氮含量高光谱测定 被引量:5

Forest soil nitrogen content estimation using hyperspectra technology based on SVR algorithm
下载PDF
导出
摘要 提出了一种利用高光谱技术进行杉木林土壤全氮测定的新方法。以FieldSpec 3地物光谱仪采集杉木林土壤148份,随机分成校正集(100份)和检验集(48份)。以不同方法实现了土壤光谱的预处理,并采用偏最小二乘回归算法(PLS)建立土壤氮含量估测模型对其进行比较分析,发现小波除噪结合多元散射校正能最有效地消除原始光谱的噪声与背景信息,此时PLS模型校正集与预测集R2分别为0.891与0.885。为进一步优化模型,对经小波除噪结合多元散射校正处理后的光谱采用主成分分析法(PCA)降维,以前4个主成份为输入变量,采用小二乘支持向量机回归算法(LS-SVR)建立了土壤氮含量估测模型,其校正集与预测集R2分别提高至0.921与0.917,具有比PLS算法更高的精度。结果表明:以高光谱技术进行林地土壤氮含量快速监测是可行的,其中小波去噪结合多元散射校正系光谱预处理的优选方法,而LS-SVR则是建模的优选方法。 A new method was put forward to measure the total N by hyperspectra technology.148 fir soil samples were collected using a FieldSpec 3 spectrometer.All samples were divided randomly into 2 groups,one group with 100 samples used as calibrated set,and the other with 48 samples used as validated set.The original spectra were pretreated by different methods,and then the PLS model was established with the spectra in the range of 350-2350 nm to compare the different pretreated methods.It was found that the background information and noise of the spectra could be eliminated by the method of wavelet denoising combined with multiplicative scatter correction effectively,with the calibration R-square(C-R2) Prediction R-square(P-R2) 0.891 and 0.885,respectively.In order to optimize the result,the pretreated spectra were analyzed using the principal component analysis(PCA),and the top 4 principal components were used as the input variables for the least square support vector regression(LS-SVR) model.The C-R2and P-R2 of LS-SVR model increased to 0.921 and 0.917,respectively,higher than those of PLS model,which indicated LS-SVR algorithm was more accurate.The result showed that it is feasible to estimate the nitrogen content of fir soil with hyperspectra technology,and the estimation model can be improved by the pretreatment method of wavelet denoising combined with multiplicative scatter correction and the modeling algorithm of LS-SVR.
作者 刘彦姝 潘勇
出处 《生态科学》 CSCD 北大核心 2013年第1期84-89,共6页 Ecological Science
基金 国家"973"计划前期研究专项(2007CB416608)资助
关键词 高光谱 土壤肥力 偏最小二乘 支持向量机 hyperspectra nitrogen soil fertility PLS LS-SVR
  • 相关文献

参考文献22

  • 1中国科学院南京土壤研究所编..土壤理化分析[M].上海:上海科学技术出版社,1978:593.
  • 2褚小立,袁洪福,陆婉珍.近年来我国近红外光谱分析技术的研究与应用进展[J].分析仪器,2006(2):1-10. 被引量:140
  • 3梁亮,刘志霄,杨敏华,张佑祥,汪承华.基于可见/近红外反射光谱的稻米品种与真伪鉴别[J].红外与毫米波学报,2009,28(5):353-356. 被引量:27
  • 4Darvishzadeh R, Skidmore A, Atzberger C, et al. Estimation of vegetation LAI from hyperspectral reflectance data: Effects of soil type and plant architecture[J]. International Journal of Applied Earth Observation and Geoinformation, 2008, 10(3): 358-373. 被引量:1
  • 5Muller K, Bottcher U, Meyer-Schatz F, et al. Analysis of vegetation indices derived from hyperspectral reflection measurements for estimating crop canopy parameters of oilseed rape(Brassica napus L.)[J]. Biosystems engineering, 2008, 101(2): 172-182. 被引量:1
  • 6Vina A, Gitelson A A, Nguy-Robertson A L, et al. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops[J]. Remote Sensing of Environment, 2011, 115(12): 3468-3478. 被引量:1
  • 7Peng Y, Gitelson A A. Remote estimation of gross primary productivity in soybean and maize based on total crop chlorophyll content[J]. Remote Sensing of Environment, 2012, 117(2): 440-448. 被引量:1
  • 8Vines L L, Kays S E, Koehler P E. Near-infrared reflectance model for the rapid prediction of total fat in cereal foods[J]. Journal of Agriculture and Food Chemistry, 2005, 53(5): 1550-1555. 被引量:1
  • 9梁亮,杨敏华,臧卓.基于小波去噪与SVR的小麦冠层含氮率高光谱测定[J].农业工程学报,2010,26(12):248-253. 被引量:36
  • 10王惠文著..偏最小二乘回归方法及其应用[M].北京:国防工业出版社,1999:274.

二级参考文献268

共引文献348

同被引文献68

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部