期刊文献+

基于非线性粒子群算法与神经网络的天气预测 被引量:1

Weather Forecast Based on Nonlinear PSO-BP
下载PDF
导出
摘要 采用非线性PSO-BP神经网络对天气预测,可以有效地预测出多云、晴天和下雨3种不同天气。非线性PSO-BP算法提高了天气预测的准确度和精度,加快了网络收敛速度,为智能化天气预报提供了基础。 Three kind of different weathers,including clear day, cloudy day and rainy day can be predicted by using a neural network trained by the hybrid algorithm combining nonlinear particle swarm optimization (PSO) algorithm with back propagation (BP). Nonlinear PSO-BP method improved the prediction rate and computing accuracy, promoted the net convergence speed, and provided an effective and feasible method for intelligent weather forecast.
出处 《现代农业科技》 2013年第11期265-266,268,共3页 Modern Agricultural Science and Technology
关键词 非线性 粒子群算法 BP神经网络 天气预测 nonlinear particle swarm optimization algorithm BP neutral network weather forecast
  • 相关文献

参考文献14

  • 1NANEY F. Advanced Weather System. Government Executive [EB/OL]. ( 2000-04-01 ) [2010-10-03]. http : II www.govexee.com /features/ 0400/ 04005553. htm. 被引量:1
  • 2中国气象局培训中心编著..MICAPS3系统培训教材[M].北京:气象出版社,2010:352.
  • 3i HUANG Hao ,CHEN Kui-sheng,ZENG Liang-cai. A genetic algorithm- based neural network approach for fault diagnosis in hydraulic servo- valves[M]//Advances in Machine Learning and Cybernetics. Springer Berlin Heidelberg, 2006 : 813-821. 被引量:1
  • 4HU Wei,HU Jing-tao,HU W,et al.A New BP Network Based on Improved PSO Algorithm and Its Application on Fault Diagnosis of Gas Turbine [My/Advances in Neural Networks-ISNN 2007. Springer Berlin Heidelberg, 2007 : 277-283. 被引量:1
  • 5孙喜波,刘琼荪.改进混沌PSO算法的BP网络优化[J].微计算机信息,2011,27(5):157-159. 被引量:10
  • 6HICKS C R. Fundamental Concepts in the Design of Experiments [D]. fourth ed. Texas :Saunders College, 1993. 被引量:1
  • 7LEE C M ,KO C N. Time series prediction using RBF neural networks with a nonlinear time-varying evolution PSO algorithm[J].Neuroco- reputing, 2009 ( 73 ) : 449-460. 被引量:1
  • 8陶海龙,辜琳丽,张胜召.改进粒子群优化算法的BP神经网络在机车滚动轴承故障诊断中的应用[J].铁路计算机应用,2012,21(2):9-12. 被引量:9
  • 9王涛,王晓霞.基于改进PSO-BP算法的变压器故障诊断[J].中国电力,2009,42(5):13-16. 被引量:20
  • 10LINSE D J,STRENGEL R F. Identification of Aerodynamic Coefficients Using Computational Neural Networks[J]. Guidance,Control Dyn, 1993, 16(6) : 1018-1025. 被引量:1

二级参考文献32

共引文献51

同被引文献4

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部