期刊文献+

独立信号与相干信号并存的任意阵列测向方法 被引量:5

A method for direction finding of uncorrelated and coherent signals coexisted based on arbitrary array
下载PDF
导出
摘要 针对现有的基于压缩感知理论的测向方法,其阵元利用率较低且对信噪比要求较高,基于压缩感知理论,提出了一种信号子空间测量模型,并将其用于独立信号与相干信号同时存在的情况,实现了任意阵列测向,有效扩展了阵列孔径并提高了低信噪比时的估计性能.该方法首先对独立信号的入射角度进行估计并消除相干信号的干扰;然后利用斜轴投影技术获得只含相干信号信息的数据矩阵,进而估计出相干信号的波达方向.理论分析和实验仿真结果表明,所提方法具有计算简便、阵列利用率高以及低信噪比时估计性能好等优点. The present direction finding methods based on the compressive sensing theory require a high signal to noise ratio(SNR) and have been found to have low array element utilization.A signal subspace measurement model,based on the compressive sensing theory,was proposed and applied in the uncorrelated and coherent signals coexisting circumstances,in efforts to achieve direction finding of arbitrary array,which expands array aperture effectively and improves the estimation performance at low SNR.For this proposed method,the incident angle of uncorrelated signal was estimated first,and next the influence of the coherent signals was eliminated.After that the data covariance matrix of the coherent signals was estimated by utilizing the oblique projection method,thus,the DOA of coherent signals was then estimated.Theoretical analysis and simulation results illustrate that the proposed method has a small computational load,high array element utilization and an excellent estimation performance at low SNR.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2013年第4期517-523,共7页 Journal of Harbin Engineering University
基金 国家自然科学基金资助项目(61102106) 中央高校基本科研业务费专项基金资助项目(HEUCF1208 HEUCF100801)
关键词 测向 任意阵列 压缩感知 斜轴投影 uncorrelated signal coherent signal direction finding arbitrary array compressive sensing oblique projection
  • 相关文献

参考文献18

  • 1郭艳,刘学亮,李宁,吴启辉.适于相干信号DOA估计的改进矩阵差分方法[J].北京邮电大学学报,2011,34(2):122-125. 被引量:2
  • 2孙晓颖,陈建,林琳.基于时空处理的频率与二维DOA联合估计算法[J].通信学报,2009,30(8):39-44. 被引量:7
  • 3BELLONI F, RICHTER A, tion via manifold separation[J]. IEEE Transactions KonOIVUNEN V. DOA estima- for arbitrary array structures Signal Processing, 2007, 55 (10) : 4800-4810. 被引量:1
  • 4韩晓东,刁鸣.冲击噪声背景下均匀圆阵相干信源的DOA估计[J].应用科技,2012,39(1):35-38. 被引量:3
  • 5ZHUANG Jie, LI Wei, MANIKAS A. An IDFT-based root- MUSIC for arbitrary array [C]// IEEE Conference on A- coustics Speech and Signal Processing. Dallas, USA, 2010: 2614-2617. 被引量:1
  • 6RUBSAMEN M, GERSHMAN A B. Direction-of-arrival es- timation for non-uniform sensor arrays: from manifold sepa- ration to Fourier domain MUSIC methods [ J ]. IEEE Trans- actions on Signal Processing, 2009, 57(2) : 588-599. 被引量:1
  • 7BILIK I. Spatial compressive sensing approach for field di-rectionality estimation [ C ]// IEEE Conference on Radar. Pasadena, USA, 2009 : 1-5. 被引量:1
  • 8BILIK I. Spatial compressive sensing for direction of arrival estimation of multiple sources using dynamic sensor arrays [ J ]. IEEE Transactions on Aerospace and Electronic Sys- tems, 2011, 47(3) : 1754-1769. 被引量:1
  • 9KHOMCHUCK P, BILIK I. Dynamic direction of arrival es- timation via spatial compressive sensing [ C ]// IEEE Con- ference on Radar. Washington DC, USA, 2010: 1191- 1196. 被引量:1
  • 10WANG Y, LEUS G, PANDHARIPANDE A. Direction es- timation using compressive sampling array processing [ C ]// IEEE Workshop on Statistical Signal Processing. Cardiff. 2009: 626-629. 被引量:1

二级参考文献43

  • 1齐崇英,王永良,张永顺,陈辉.色噪声背景下相干信源DOA估计的空间差分平滑算法[J].电子学报,2005,33(7):1314-1318. 被引量:18
  • 2唐斌,肖先赐.一种新的空间信号三维参数可分离估计方法[J].信号处理,1996,12(2):174-178. 被引量:3
  • 3RAO C R, ZHAO L C, ZHOU B. A novel algorithm for 2-D frequency estimation[A]. Twenty-seventh Asilomar conf. on signals, systems and computers[C]. California, USA, 1993. 199-202. 被引量:1
  • 4LIU F L, WANG J K, DU R Y. Space-time matrix method for 2-D direction of arrival estimation [J]. Signal Processing, 2007, 87(1):101-106. 被引量:1
  • 5QI C Y, WANG Y L, ZHANG Y S. A space-time processing approach to joint estimation of signal frequency and 2D direction of arrival[A]. 2005 IEEE Antennas and Propagation Society International Symposium[C]. Washington, DC, U.S.A., 2005.370- 373. 被引量:1
  • 6ZOLTOWSKI M D, MATHEWS C E Real-time frequency and 2D angle estimation with sub-Nyquist spatio-temporal samping[J]. IEEE Trans on S P, 1994, 42(10): 2781-2797. 被引量:1
  • 7LIN C H, FANG W H. Fast algorithm for joint azimuth and elevation angles, and frequency estimation via hierarchical space-time decomposition[A]. 2007 IEEE International Conference on Acoustics, Speech, and Signal Processing[C]. Honolulu, USA, 2007. 1061-1064. 被引量:1
  • 8LIU T H, MENDEL J M. Azimuth and elevation direction finding using arbitrary array geometries[J]. IEEE Trans on S E 1998, 46(7): 2061-2065. 被引量:1
  • 9Amin M S, Azim M R, Rahman S P, et al. Estimation of direction of arrival (DOA) using real-time array signal processing and performance analysis [ J ]. IJCSNS, 2010, 10(7) : 43-57. 被引量:1
  • 10Parvazi P, Gershman A B. Direction-of-arrival and spatial signature estimation in antenna arrays with pairwise sensor calibration [ C ] //IEEE ICASSP. Dallas: IEEE Press, 2010: 2618-2621. 被引量:1

共引文献22

同被引文献56

  • 1韩芳明,张守宏.用改进的MUSIC算法实现相干多径信号分离[J].系统工程与电子技术,2004,26(6):721-723. 被引量:6
  • 2童子权.1GSPS高速数据采集时钟系统的设计[J].哈尔滨理工大学学报,2007,12(3):36-39. 被引量:5
  • 3曹轶超.目标定位最大似然估计[J].沈阳大学学报,2007,19(4):12-14. 被引量:3
  • 4TONG Z, GAI J. Research on data Synchronizing Storage of Multi- channel ADCs Time-interleaved High Speed Sampling[J]. Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2009, 30 : 292 - 295. 被引量:1
  • 5EL-CHAMMAS M, MURMANN B. General Analysis on the Im- pact of Phase-skew in Time-interleaved ADCs[ J]. IEEE Transac- tions on Circuits and Systems I: Regular Papers, 2009, 56 (5) : 902 -910. 被引量:1
  • 6SALEEM S, VOGEL C. Adaptive Blind Background Calibration of Polynomial-represented Frequency Response Mismatches in a Two- channel Time-interleaved ADC[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2011,58(6) :1300 - 1310. 被引量:1
  • 7VOGEL C, HOTZ M, et al. A Review on Low-Complexity Struc- tures and Algorithms for the Correction of Mismatch Errors in Time-interleaved ADCs[ C ]//IEEE 10th International New Cir- cuits and Systems Conference(NEWCAS), Montreal, QC, Jun. 2012, 349 - 352. 被引量:1
  • 8DONOHO D L. Compressed Sensing [ J ]. IEEE Transaction on Information Theory, 2006, 52(4) : 1289 -1306. 被引量:1
  • 9BARANIUK R. A Lecture Compressive Sensing[J]. IEEE Sig- nal Processing Magazine, 2007, 24(4) : 118 -121. 被引量:1
  • 10CANDES E J, ROMBERG J, TAO T. Robust Uncertainty Princi- ples: Exact Signal Reconstruction from Highly Incomplete Fre- quency Information[ J]. IEEE Transactions on Information Theo- ry, 2006, 52(2) :489 -509. 被引量:1

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部