期刊文献+

MIMO-OFDM系统基于压缩感知的稀疏信道估计 被引量:3

Sparse Channel Estimation Based on Compressed Sensing for MIMO-OFDM Systems
下载PDF
导出
摘要 为了提高MIMO-OFDM系统稀疏信道估计的准确度及减少导频子载波的数目,利用频率选择性衰落信道的冲激响应在时域具有稀疏性的先验信息,将MIMO-OFDM系统的信道估计建模为压缩感知框架里受到噪声干扰的复数信号重构,提出了分别基于稀疏度自适应匹配追踪(sparsity adaptive matching pursuit,SAMP)和变量分离近似稀疏重构(sparse reconstruction by separable approximation,SRSA)的两种MIMO-OFDM系统稀疏信道估计方法.仿真结果表明:与传统最小二乘法的信道估计相比,在相同信噪比条件下能获得相等的估计性能,且这两种方法不必将信道的稀疏度作为先验知识,也能减少40%的导频子载波.在估计准确度方面,基于SAMP的方法优于采用SRSA的方法,前者的MSE和BER性能更接近Cramer-Rao界:但在算法参数设置方面,后者比前者在实际应用中更容易准确设定. To improve accuracy of sparse channel estimation and reduce the pilot number in MIMO-OFDM systems, we use the sparse prior information of the channel impulse response in the time domain, and model the estimation of frequency selective fading channel for MIMO-OFDM systems as the reconstruction of complex sparse signal interfered by noise in compressed sensing. Two methods of sparse channel estimation in MIMO- OFDM systems are proposed, based on sparsity adaptive matching pursuit (SAMP) and sparse reconstruction by separable approximation (SRSA), respectively. Simulation shows that, under the same signal-to-noise ratio and for the same performance of MSE and BER without prior information of the sparsity, the two proposed methods can reduce pilot signals by 40% as compared to the conventional least square method. In the two methods, the one based on SAMP runs faster and is closer to the Cramer-Rao bound, while parameters of the one based on SRSA are easier to be set in practical applications.
出处 《应用科学学报》 CAS CSCD 北大核心 2013年第3期245-251,共7页 Journal of Applied Sciences
基金 国家自然科学基金(No.60972041) 高等学校省级优秀青年人才基金(No.2010SQRL030) 江苏省普通高校研究生科研创新计划项目基金(No.CXZZ11_397)资助
关键词 稀疏信道估计 自适应匹配追踪 变量分离稀疏重构 多输入多输出 正交频分复用 sparse channel estimation, sparsity adaptive matching by separable approximation (SRSA), multiple input multiple output multiplexing (OFDM) pursuit (SAMP), sparse reconstruction (MIMO), orthogonal frequency division
  • 相关文献

参考文献20

  • 1BAJWN W U, SAYEED A M, NOWAK R. Sparse multi- path channels: modeling and estimation [C]//Digital Signal Processing Workshop and 5th IEEE Digital Signal Processing Education Workshop, Marco Is- land, FL, 2009: 320-325. 被引量:1
  • 2CARBONELLI C, VEDANTAM S, MITRA U. Sparse channel estimation with zero tap detection [J]. IEEE Transactions on Wireless Communication, 2007, 6(5): 1743-1753. 被引量:1
  • 3WAN F, ZHU W P, SWAMY M N S. Semi-blind most significant tap detection for sparse channel esti- mation of OFDM systems [J]. IEEE Transactions on Circuits and Systems-I: Regular Papers, 2010, 57(3): 703-713. 被引量:1
  • 4DONOHO D. Compressed sensing [J]. IEEE Transac- tions Information Theory, 2006, 52(4): 1289-1306. 被引量:1
  • 5BAJWN W U, HAUPT J, SSYEED A M, NOWAK R. Compressed channel sensing: a new approach to es- timating sparse multipath channels [J]. IEEE Trans- actions on Signal Processing, 2010, 98(6): 1058-1076. 被引量:1
  • 6王妮娜,桂冠,张治,唐恬.基于压缩感知的MIMO系统稀疏信道估计[J].应用科学学报,2011,29(4):347-352. 被引量:11
  • 7TAUBOCK G, HLAWATSCH F, EIWEN D, RAUHUT H. Compressive estimation of doubly selective channelsin multicarrier systems: leakage effects and sparsity- enhancing processing [J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 255-271. 被引量:1
  • 8方勇,赵维杰,汪敏.信道压缩表示的OFDM快衰落信道估计[J].应用科学学报,2012,30(6):581-587. 被引量:1
  • 9KHOJASTEPOUR M A, GOMADAM K, WANG X D. Pilot-assisted channel estimation for MIMO OFDM systems using theory of sparse signal recovery [C]// IEEE International Conference on Acoustics, Speech and Signal Processing, 2009: 2693-2696. 被引量:1
  • 10PENG Yuexing, YANG Xiao, YANG Xiaofeng, WANG Wenbo, Wu Bin. Compressed MIMO-OFDM chan- nel estimation [C]//12th IEEE International Con- ference on Communication Technology, 2010: 1291- 1294. 被引量:1

二级参考文献29

  • 1PARDES J L, ARCE G R, WANG Zhongmin. Ultrawideband compressed sensing: channel estimation [J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(3): 383-395. 被引量:1
  • 2BERGER C R, WANG Zhaohui, HUANG Jianzhong, ZHOU Shengli. Application of compressive sensing to sparse channel estimation [J]. IEEE Communication Magazine, 2010, 48(11): 164-174. 被引量:1
  • 3GUI Guan, WAN Qun, PENG Wei, FUMIYUKI A. Sparse multipath channel estimation using compressive sampling matching pursuit algorithm [C]// IEEE VTS APWCS2010, IEEE Vehicular Technology Society Asia Pacific Wireless Communication Symposium, May 19-22, 2010. 被引量:1
  • 4BERGER C R, ZHOU Shengli, PREISIG J C, WILLETT P. Sparse channel estimation for multicarrier underwater acoustic communication: from subspace methods to compressed sensing [J]. IEEE Transaction on Signal Processing, 2010, 58(3): 1708-1721. 被引量:1
  • 5TAUBOCK G, HLAWATSCH F. A compressed sensing technique for OFDM channel estimation in mobile environments: exploiting channel sparsity for reducing pilots [C]// Proceedings of ICASSP2008, IEEE International Conference on Acoustics, Speech, and Signal Processing, March 31 2008-April 4 2008, Las Vegas, NV: 2885-2888. 被引量:1
  • 6TAUBOCK G, HLAWATSCH F, EIWEN D, RAUHUT H. Compressive estimation of doubly selective channels in multicarrier systems: leakage effects and sparsityenhancing processing [J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 255-271. 被引量:1
  • 7COTTER S F, RAO B D. Sparse channel estimation via matching pursuit with application to equalization [J]. IEEE Transaction on Communications, 2002, 50(3): 374-377. 被引量:1
  • 8NEEDELL D, TROPP J A. CoSaMP: iterative signal recovery from incomplete and inaccurate samples IJ]. Applied and Computational Harmonic Analysis, 2009, 26(3): 301-321. 被引量:1
  • 9CANDES E, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transaction on Information Theory, 2006, 52(4): 489-509. 被引量:1
  • 10DONOHO D L. For most large underdetermined systems of equations, the minimal 11 norm near-solution approximates the sparsest near-solution [J]. Communications on Pure and Applied Mathematics, 2006, 59(7): 907-934. 被引量:1

共引文献10

同被引文献11

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部