摘要
In this work, a development of a method of a thin insulating film vertical edge visualization of metal-insulator-metal (MIM) memory cells with atomic force microscopy (AFM) using a modified Omicron UHV AFM/STM microscope was performed. This included a development of a technique of the AFM visualization of segments of a vertical edge of thin insulator SiO2 film structures on a conductive substrate, a comparison of AFM topography and current profilograms for the edge profiles, and an Omicron microscope custom upgrade. The latter allowed us to perform the AFM probe positioning to any specific area of the sample in the scanning plane by two coordinates with an order of precision of 1 micrometer. The method is illustrated with the experimental results of AFM investigations of the special MIM structures with comb-type topology, and of the cells of functioning memory matrices with 20 nm thin silicon dioxide film open edge perimeter and TiN lower electrode, including topography/current profilograms. As a conclusion, our ongoing work on the AFM visualization of a complete perimeter of a SiO2 open edge of memory cells with a special new topology with a goal to visualize conductive phase nanoparticles during switching processes is briefly overviewed.