期刊文献+

线性不适定问题中选取Tikhonov正则化参数的线性模型函数方法(英文) 被引量:6

On the Linear Model Function Method for Choosing Tikhonov Regularization Parameters in Linear Ill-posed Problems
下载PDF
导出
摘要 如何选取正则化参数是不适定问题Tikhonov正则化的一个重要问题.基于吸收的Morozov偏差原理,研究了正则化参数选取的线性模型函数方法.在从Hermite插值角度导出线性模型函数后,讨论了选取正则化参数的两种线性模型函数算法(基本算法与改进算法)及其收敛性.为克服基本算法的局部收敛性,提出了一种新的线性模型函数松弛算法.并且,提出了两种具有全局收敛性的组合算法,即线性与线性模型函数算法、双曲型与线性模型函数算法.数值实验说明了所提算法的有效性. How to choose regularization parameters is an important issue in Tikhonov regular- ization of ill-posed problems. Based on the damped Morozov discrepancy principle, this paper studies the linear model function method for choosing regularization parameters. The linear model function is derived from the point of view of the Hermite interpolation, and two linear model function algorithms (a basic algorithm and a modified algorithm) with their convergence results are discussed for choosing regularization parameters. Then, a new relaxation algorithm for the linear model function is proposed to overcome the local convergence of the basic algorithm. Fur- thermore, two hybrid algorithms, the linear-to-linear model function algorithm and the hyperbolic-to-linear model function algorithm, are proposed with global con- vergence. Efficiency of the proposed algorithms is illustrated through numerical experiments.
出处 《工程数学学报》 CSCD 北大核心 2013年第3期451-466,共16页 Chinese Journal of Engineering Mathematics
基金 The National Natural Science Foundation of China(11161002 11071221) the Young Scientist Training Project of Jiangxi Province(20122BCB23024)
关键词 不适定问题 正则化参数 线性模型函数 Morozov偏差原理 ill-posed problem regularization parameter linear model function Morozov dis-crepancy principle
  • 相关文献

参考文献3

二级参考文献19

  • 1Kirsch A.An introduction to the mathemtical theory of inverse problems[M]//Apllied Mathenatical Sciences 120.New York:springer,1996. 被引量:1
  • 2Groetsch C W.The Theory of tikhonov regularization for fredhoIm equations of the first kind[M].Boston:Pitman,1984. 被引量:1
  • 3Engl H W,Hanke M,Neubauer A.Regularization of inverse problems[M].Dordrecht:Kluwer,1996. 被引量:1
  • 4Showalter R E. The final value problem for evolution equations[J]. J Math Anal Appl, 1974, 47:563-572. 被引量:1
  • 5Carasso A. Error bounds in the final value problem for the heat equation[J]. SIAM J Math Anal, 1976, 7: 195-199. 被引量:1
  • 6Colton C. The approximation of solutions to the backwards heat equation in a nonhomogeneous medium[J]. J Math Anal Appl, 1979, 72:418-429. 被引量:1
  • 7Mubiz W B, Ramos F M, Campos-Velho H F. Entropy and Tikhonov based regularization techniques applied to the backwards heat equation[J]. Comput Math Appl, 2000, 40:1071-1084. 被引量:1
  • 8Xiong X T, Fu C L, Qian Z, Gao X. Error estimates of a difference approximation method for a backward heat conduction problem, International Journal of Mathematics and Mathematical Sciences[J]. 2006, Article ID: 45489, Pages 1-9. 被引量:1
  • 9Qian z, Fu C L, Shi R. A modified method for a backward heat conduction problem[J]. Appl Math Comput, 2007, 185:564-573. 被引量:1
  • 10Fu C L, Xiong X T, Qian Z. Fourier regularization for a backward heat quation[J], J Math Anal Appl, 2007, 331:472-480. 被引量:1

共引文献7

同被引文献32

引证文献6

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部