期刊文献+

基于主成分分析与BP神经网络相结合的机床主轴热漂移误差建模 被引量:16

Thermo-Drifting Error Modeling of Spindle Based on Combination of Principal Component Analysis and BP Neural Network
下载PDF
导出
摘要 为提高数控机床热误差模型的预测精度,提出了将主成分分析与BP神经网络相结合的主轴热漂移误差的建模和预测方法.使用主成分分析法对多个温度变量进行降维处理或重新组合,将处理后所得较少的主成分变量作为样本输入BP神经网络进行训练而得到主轴热漂移误差模型,并与经过测点优化后以关键点温度作为输入的BP神经网络模型进行对比分析.结果表明:基于主成分分析与BP神经网络相结合的主轴热漂移误差模型的拟合精度较高,残差较小;由于BP神经网络的输入变量较少而使所提出的模型训练速度快、迭代次数少. In order to improve the prediction accuracy of thermal error model, a data processing method based on the combination of principal component analysis and BP neural network was presented. By using principal component analysis, the amount of temperature variables will be reduced. Then the principal components are employed to train the BP neural network in order to obtain the thermal error model. As the number of inputs is reduced, the train process can be faster and the iteration time can be reduced. In comparison with the network model which uses the critical point temperatures as the input, the results show that BP neural network thermal error modeling method based on principal component analysis meth- od has advantages of high fitting accuracy and smaller residual error. So this modeling method has both high efficiency and accuracy of compensation.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2013年第5期750-753,759,共5页 Journal of Shanghai Jiaotong University
基金 国家科技重大专项项目(2011ZX04015-031)资助
关键词 数控机床 热误差 主成分分析 神经网络 建模 machine tools thermal error principal component analysis neural network modeling
  • 相关文献

参考文献8

  • 1Ramesh R, Mannan M A, Poo A N. Error compensa- tion in machine tools: A review. Part II: Thermal er- rors [J]. International Journal of Machine Tools and Manufacture, 2000, 40 (9): 1257-1284. 被引量:1
  • 2Hong Y, Jun N. Dynamic neural network modeling for nonlinear, non-stationary machine tool thermally induced error [J]. International Journal of Machine Tools and Manufacture, 2005, 45 (4-5): 455-465. 被引量:1
  • 3Shen J H, Yang J G. Application of partial least squares neural network in thermal error modeling for CNC machine tool [J]. Key Engineering Materials, 2009, 392 (30):30-34. 被引量:1
  • 4Wu Hao, Zhang Hong-tao, Guo Qian-jian, et al. Thermal error optimization modeling and real-time compensation on a CNC turning center [J]. Journal of Materials Processing Technology, 2008, 207 (1-3) : 172- 179. 被引量:1
  • 5方健,李自品,彭辉,戴思初,吴晓文.基于主成分分析法的BP神经网络的应用[J].变压器,2011,48(1):47-51. 被引量:21
  • 6Mize Christopher D, Ziegert John C. Neural network thermal error compensation of a machining center [J]. Journal of the International Societies for Precision Engi- neering and Nanotechnology, 2000, 24 (4): 338-346. 被引量:1
  • 7张毅,杨建国.基于灰色神经网络的机床热误差建模[J].上海交通大学学报,2011,45(11):1581-1586. 被引量:35
  • 8闫嘉钰,张宏韬,刘国良,杨建国.基于灰色综合关联度的数控机床温度测点分组优化[J].湖南大学学报(自然科学版),2008,35(4):37-41. 被引量:9

二级参考文献27

共引文献62

同被引文献147

引证文献16

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部