期刊文献+

耦合谐振子体系能谱的不变本征算符求解法 被引量:1

Invariant Eigen-operator Method for Deriving the Coupling Harmonic Oscillator Energy Spectrum
下载PDF
导出
摘要 基于量子力学体系的不变本征算符方法,求解两类典型的耦合谐振子模型的能隙,并分别运用幺正变换和矩阵对角化的处理方法对能隙计算的结果给予验证。结果表明,运用不变本征算符方法处理量子体系能谱具有良好的实用性与简洁性。 By virtue of the invariant eigne-operator (IEO) method, the energy level gaps of two typical coupling harmonic oscillator models have been derived. The same results have been demonstrated by using the unitary transformation method and the diagonalization method. As a result, the practicability and the sententiousnessof lEO method have been shown.
出处 《安徽工业大学学报(自然科学版)》 CAS 2013年第2期178-181,共4页 Journal of Anhui University of Technology(Natural Science)
基金 安徽省高校自然科学研究项目(KJ2012Z035) 安徽省高校优秀青年人才基金项目(2012SQRL040) 安徽工业大学大学生科研计划项目(2011086)
关键词 不变本征算符 谐振子 幺正变换 对角化 invariant eigen-operator harmonic oscillator unitary transform diagonalization
  • 相关文献

参考文献8

  • 1FAN Hong-Yi,YAN Peng.One- and Two-Mode Combination Squeezing Operator for Two Harmonic Oscillators with Coordinate-Momentum Coupling[J].Communications in Theoretical Physics,2007,48(3X):428-430. 被引量:1
  • 2Fan H Y,Tang X B, Gni W J. Deriving the energy-level gap of some dynamic Hamiltionians in quantum optics by means of the invarianteigen-operator method [J]. Journal of Optics B: Quantum and Semiclassical Optics, 2005, 7(16): 194-197. 被引量:1
  • 3Tang X B, Fan H Y. Deriving energy-level gap of some dynamic hamiltonians in many particle physics by virtue of the invarianteigen-operator method [J]. International Journal of Theoretical Physics, 2010,49(4):877-883. 被引量:1
  • 4Fan H Y, Hu H P, Tang X B. Invariant eigen operators and eneigy gap for some Hamiltonians describing photonic nonlinear interaction[J]. Journal of Physics A: Mathematical and General, 2005,38(20):4391-4398. 被引量:1
  • 5Bouwmeester D, Pan J W, Mattie K, et al. Experimental quantum teleportation [J]. Nature, 1997, 390(12):575-579. 被引量:1
  • 6Louisell W H, Yariv A, Seigman A E. Quantum Auctions and noise in parametric processes I [J]. Physical Review, 1961,124(6):1646-1654. 被引量:1
  • 7Scully M 0,Zubairy M S. Quantum Optics [M]. Beijing: Cambidge University Press, 1997. 被引量:1
  • 8曾谨言.量子力学[M].北京:科学出版社,2007. 被引量:10

二级参考文献14

  • 1D.F.Walls and G.J.Milburn,Quantum Optics,Springer-Verlag,Berlin (1994) 被引量:1
  • 2M.Orszag,Quantum Optics,Springer-Verlag,Berlin (2000) 被引量:1
  • 3W.P.Schleich,Quantum Optics in Phase Space,Wiley-Vch,Berlin (2001) 被引量:1
  • 4M.O.Scully and M.S.Zubairy,Cambridge University Press,Cambridge (1997). 被引量:1
  • 5G.M.D'Ariano,M.G.Rassetti,J.Katriel and A.I.Solomon,Squeezed and Nonclassical Light,eds.P.Tombesi and E.R.Pike,Plenum,New York (1989) p.301 被引量:1
  • 6V.Buzek,J.Mod.Opt.37 (1990) 303 被引量:1
  • 7R.Loudon and P.L.Knight,J.Mod.Opt.34 (1987) 709. 被引量:1
  • 8Fan Hong-Yi,Phys.Rev.A 41 (1990) 1526 被引量:1
  • 9Fan Hong-Yi,Commun.Theor.Phys.(Beijing,China) 17 (1992) 355. 被引量:1
  • 10Zhang Zhong-Xi and Fan Hong-Yi,Quantum Opt.5(1993) 149. 被引量:1

共引文献9

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部