摘要
本文研究了一类用微分代数系统定义描述的带时滞和Holling II型功能反映的生态经济模型的稳定性和Hopf分支问题.利用了一种新的微分代数系统参数化方法,以时滞为分支参数,获得了上述微分代数生态经济系统稳定性的相关条件判据和Hopf分支的产生条件,推广了一般微分系统模型的结论.
In this paper ,we investigate the stability and Hopf bifurcation in a delayed biological economic system with Holling II functional response and differential-algebraic descrip- tion. Using a new parameterization approach of the differential algebraic system, we obtain the interrelated stability criterion and the related conditions of producing Hopf branch of the differential algebraic biological economic system above-mentioned by considering the time delay as bifurcation parameter, and popularize the conclusions of the general differential system.
出处
《数学杂志》
CSCD
北大核心
2013年第3期511-518,共8页
Journal of Mathematics
基金
湖北省自然科学基金资助项目(2007ABA124)
湖北省教育厅重大项目(Z200622002)
青年科研基金项目(Q200722001)