期刊文献+

基于主元分析和模糊模型的链霉素发酵过程建模 被引量:6

Streptomycin Fermentation Process Modeling with Principal Component Analysis and Fuzzy Model
下载PDF
导出
摘要 基于主元分析和模糊模型 ,提出了一种简单而有效的链霉素发酵过程产物浓度的预报方法 .该方法采用主元分析压缩关联程度高且含有测量噪声的实际工业生产数据 ,筛选出影响产物浓度的主要过程变量 ,构造了模糊分段线性模型的产物浓度估计器 .与线性多元回归模型相比 ,模糊模型更适合作为间歇发酵过程的状态估计器 . Analysis, modeling and control for fed batch fermentation process still remain a challenging issue. Based on Principal Component Analysis(PCA) and fuzzy model, a simple and efficient approach to monitor the fed batch streptomycin fermentation is presented. The data obtained from industrial streptomycin fermentation process were preliminary analyzed with PCA so that the large multivariate data with highly correlated and noisy measuremnts can be compressed into a lower dimension space which contains most of the variance of the original matrix. Moreover, fuzzy model was used to construct a product (antibiotic) concentration estimator of the streptomycin fermentation process in that prior knowledge and expertise are important in fed batch fermentation processes. The results of fuzzy model comparing with linear multivariate regression model indicate that the potential of fuzzy model as state estimator of all such industrial fed batch processes.
出处 《无锡轻工业学院学报》 CSCD 2000年第5期446-450,共5页
关键词 链霉素发酵 主元分析 模糊模型 监控 浓度估计器 streptomycin fermentation principal component analysis fuzzy model monitoring
  • 相关文献

参考文献1

  • 1陈元青.生化过程优化分析、建模和监控的研究[M].杭州:浙江大学,1999.. 被引量:1

同被引文献31

  • 1朱燕飞,伍建平,李琦,毛宗源.MISO系统的混合核函数LS-SVM建模[J].控制与决策,2005,20(4):417-420. 被引量:15
  • 2刘艳芳,周晓微,梁萌.人工神经网络在生物过程中的应用[J].郑州大学学报(工学版),2007,28(2):121-124. 被引量:2
  • 3Vapnik V, Golowich S, Smola A. Support vector machine for function approximation, regression estimation, and signal processing [J]. Neural Information Processing Systems, 1997. 被引量:1
  • 4MacVoy I J. Contemplative stance for chemical process [J]. Automatical , 1992, 28 (2): 441-442. 被引量:1
  • 5Buckkks C. An integrated approach to optimization of Escherichia coli fermentations using historical data [J]. Biotechnology and Bioengineering, 2003, 84 (3) : 274-285. 被引量:1
  • 6[1]GERG M.Consider Soft Sensors. Chemical Engineering Progress, 1997,(1):66~70. 被引量:1
  • 7[3]Nazmul K M, Toshiomi Y, Sheyla L R, et al.. Global and local neural network models in biotechnology: application to different cultivation processes. J Ferment Bioeng, 1997, 83(1):1~11. 被引量:1
  • 8[4]Chen S, Cowan C F N, Grant P M. Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks. IEEE Trans. on Neural Networks, March, 1991, 2(2):302~309. 被引量:1
  • 9王小平 曹立明.遗传算法-理论、应用与软件实现[M].西安:西安交通大学出版社,2003.. 被引量:45
  • 10Rannar S, MacGregor J F. Adaptive batch monitoring using hierarchical PCA [J]. Chemometrics Intell Lab Syst, 1998, 30: 73-81. 被引量:1

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部