期刊文献+

N-弱鞅的不等式及强大数定理

The Inequality and Strong Law of Large Numbers for N-demimartingale
下载PDF
导出
摘要 在X.J.Wang等(Statist.Probab.Lett.,2011,81:1348-1353.)工作的基础上,针对其未讨论的一类情形,获得了一个N-弱鞅的强大数定理.另外,将一个N-弱上鞅的不等式推广到连续N-弱上鞅,并给出了一种特殊形式的一个强大数定理. In this paper, we prove a strong law of large numbers for N-demimartingale on the basis of the work of X. J. Wang, et al (Statist. Probab. Lett. ,2011,81:1348 - 1353. ) which they have not discussed. In addition, we extend an inequality for N-demisu- permartingale to continuous time parameter N-demisupermartingale, and give a strong law of large numbers for a speeial form.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第3期347-349,共3页 Journal of Sichuan Normal University(Natural Science)
基金 中央高校基本科研业务费专项资金(SWJTU11CX155)资助项目
关键词 N-弱(上)鞅 不等式 强大数定理 N-demi (super) martingale inequality strong law of large numbers
  • 相关文献

参考文献15

  • 1Christofides T C. Maximal inequalities for N- demimartingales[ J]. Arch Inequal Appl,2003,50( 1 ) :387 -397. 被引量:1
  • 2Prakasa Rao B L S. On some maximal inequalities for demisubmartingales and N -demisupermartingales[ J]. Inequal Pure Appl Math,2007,8(4) :1 - 17. 被引量:1
  • 3Prakasa Ran B L S. On some inequalities for N- demimartingales[ J]. Indian Soc Agricultural Statist,2004,57:208 -216. 被引量:1
  • 4Christofides T C, Hadjikyriakou M. Exponential inequalities for N- demimartingales and negatively associated random variables [J]. Statist Probab Lett,2009,79:2060-2065. 被引量:1
  • 5Hadjikyriakou M. Marcinkiewicz - Zygmund inequality for nonnegative N - dernimartingales and related results [ J]. Statist Probab Lett,2011,81:678 -684. 被引量:1
  • 6Wang X J, Hu S H, Prakasa Rao B L S, et al. Maximal inequalities for N - demimartingale and strong law of large numbers [ J ]. Statist Probab Lett,2011,81 : 1348 - 1353. 被引量:1
  • 7Christofides T C. Maximal inequalities for demimartingales and a strong law of large numbers [ J ]. Statist Probab Lett, 2000, 50(4) :357 - 363. 被引量:1
  • 8Newman C M, Wright A L. Associated random variables and martingale inequalities[J]. Z Wahrsch Verw Geb,1982,59(3) :361 -371. 被引量:1
  • 9王学军,胡舒合.弱鞅的极大值不等式及其应用[J].中国科学(A辑),2009,39(4):489-499. 被引量:5
  • 10Hu S H, Wang X H, Yang W Z, et al. Some inequalities for demimartingales and N - demimartingales[ J]. Statist Probab Lett, 2011,82:232 - 239. 被引量:1

二级参考文献21

  • 1Shao Qi-man. A comparison theorem on moment inequalities between negatively associated and independent random variables [ J ]. Journal of Theoretical Probability, 2000(3) :343 - 356. 被引量:1
  • 2Anna Kuczmaszewska. The strong law of large numbers for dependent random variables [ J ]. Statistics Probability Letters, 2005,73 : 305 - 314. 被引量:1
  • 3Fazekas I, Klesov O. A general approach to the strong laws of large numbers [ J ]. Theory Probab Appl,2000, 45:569 - 583. 被引量:1
  • 4Wang J F. Maximal inequalities for associated random variables and demimartingales. Statist Probab Lett, 66:347-354 (2004) 被引量:1
  • 5Fazekas L, Klesov O. A general approach to the strong law of large numbers. Theory Probab Appl, 45: 436-449 (2001) 被引量:1
  • 6Esary J, Proschan F, Walkup D. Association of random variables with applications. Ann Math Statist, 38: 1466-1474 (1967) 被引量:1
  • 7Newman C M, Wright A L. Associated random variables and martingale inequalities. Z Wahrsch Verw Geb, 59:361-371 (1982) 被引量:1
  • 8Newman C M. Asymptotic independence and limit theorems for positively and negatively dependent random variables. In: Inequalities in Statistics and Probability, IMS Lecture Notes-Monograph Series, 5. Hayward, CA: Institute of Mathematical Statistics, 1984, 127-140 被引量:1
  • 9Cox J T, Grimmett G. Central limit theorems for associated random variables and the percolation model. Ann Probab, 12:514-528 (1984) 被引量:1
  • 10Birkel T. Moment bounds for associated sequences. Ann Probab, 16:1184-1193 (1988) 被引量:1

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部