期刊文献+

裂隙挤喷流对孔隙介质排水体积模量的影响 被引量:8

EFFECTS OF SQUIRT-FLOW IN CRACKS ON DRAINED BULK MODULUS OF POROUS MEDIA
下载PDF
导出
摘要 实际岩石比如沉积形成的岩石往往是裂隙和孔隙并存的孔隙介质.由于扁状的裂隙与近似球形或圆管形的孔隙具有不同的可压缩性,当孔隙介质受压时,液体会从易压缩的裂隙中挤出流入不易压缩的孔隙中,这种挤喷流会引起弹性模量的频散和能量的耗散.着重研究了裂隙挤喷流和液体可压缩性对孔道变形的影响,推导出了动载荷作用下排水体积模量的表达式.与挤喷流相关的裂隙附加柔度会引起排水体积模量随频率变化,使得孔隙介质呈现黏弹性.频率越高,模量的实部越大,岩石抵抗变形的能力越强.而模量的虚部体现了挤喷流对能量的耗散.裂隙密度主要决定模量频散的幅度以及能量耗散的强度,且裂隙密度越大,模量频散幅度越大,能量耗散也越强.裂隙的纵横比主要决定模量频散速率最快或能量耗散最强时对应的特征频率.若孔隙介质中不含有裂隙,即裂隙密度是0时,排水体积模量退化为Biot理论中的排水体积模量. Sedimentary. rocks are typical porous media which usually contain both cracks and pores. Liquid in rocks will be squeezed out of flat cracks and then flow into spherical pores when rocks are under pressure because cracks are much softer than pores. This kind of flow between cracks and pores is squirt-flow which usually induces elastic modulus dispersion and wave attenuation. This paper studies the effects of squirt-flow as well as the liquid compressibility on the deformation of pore space and derives the expression of drained bulk modulus under dynamic loads. There exists a crack compliance in the expression of drained bulk modulus. The crack compliance contains both the contribution of squirt-flow which is caused by pressure difference between cracks and pores and the contribution of the compressibility of the liquid in cracks. The additional compliance brings about dispersion on drained bulk modulus. The real part of drained bulk modulus increases as frequency increases which means that at high frequency rock becomes stiffer, the imaginary part of drained bulk modulus represents the energy loss in the squirt-flow. Crack density mainly decides the modulus dispersion amplitude and the squirt-flow intensity. The crack aspect ratio mainly decides the characteristic frequency of squirt-flow. The expression of drained modulus in this paper reduces to Biot expression when crack density equals zero.
出处 《力学学报》 EI CSCD 北大核心 2013年第3期395-405,共11页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金资助项目(41174110)~~
关键词 裂隙 孔隙介质 挤喷流 排水体积模量 附加柔度 模量频散 crack, porous medium, squirt flow, drained bulk modulus, additional compliance, modulus dispersion
  • 相关文献

参考文献23

  • 1Biot MA. Theory of propagation of elastic waves in a fluid-saturated porous solid.I.Low-frequency range[J].Journal of The Acoustical Society of America,1956,(02):168-178. 被引量:1
  • 2Biot MA. Theory of propagation of elastic waves in a fluid-saturated porous solid.Ⅱ.Higher frequency range[J].Journal of The Acoustical Society of America,1956,(02):179-191. 被引量:1
  • 3Biot MA. Mechanics of deformation and acoustic propagation in porous media[J].Journal of Applied Physics,1962,(04):1482-1498. 被引量:1
  • 4Skempton AW. The pore-pressure coefficients A and B[J].Géotechnique,1954.143-147. 被引量:1
  • 5Sams MS,Neep JP,Worthington MH. The measurement of velocity dispersion and frequency-dependent intrinsic attenuation in sedimentary rocks[J].Geophysics,1997,(05):1456-1464.doi:10.1190/1.1444249. 被引量:1
  • 6Pride SR,Berryman JG. Linear dynamics of double-porosity double-permeability materials I.Governing equations and acoustic attenuation[J].Physical Review E,2003.036603. 被引量:1
  • 7Pride SR,Berryman JG. Linear dynamics of double-porosity double-permeability materials Ⅱ.Fluid transport equations[J].Physical Review E,2003.036604. 被引量:1
  • 8Pride SR,Berryman JG,Harris JM. Seismic attenuation due to waveinduced flow[J].Journal of Geophysical Research,2004.B01201. 被引量:1
  • 9Walsh JB. The effect of cracks on the compressibility of rock[J].Journal of Geophysical Research,1965,(02):381-389. 被引量:1
  • 10Plona T. Observation of a second bulk compressional wave in porous medium at ultrasonic frequencies[J].Applied Physics Letters,1980.259-261. 被引量:1

二级参考文献39

  • 1崔志文,王克协,曹正良,胡恒山.多孔介质BISQ模型中的慢纵波[J].物理学报,2004,53(9):3083-3089. 被引量:21
  • 2巴晶.复杂多孔介质中的地震波传播机理研究[D]清华大学,清华大学2008. 被引量:1
  • 3Alexandre Schubnel,Philip M. Benson,Ben D. Thompson,Jim F. Hazzard,R. Paul Young.Quantifying Damage, Saturation and Anisotropy in Cracked Rocks by Inverting Elastic Wave Velocities[J]. Pure and Applied Geophysics . 2006 (5-6) 被引量:1
  • 4Budiansky B,O’’Connell R J.Bulk dissipation in heterogeneous media. Solid Earth Geophys Geotech . 1980 被引量:1
  • 5O’’Connell R J.A viscoelastic model of anelasticity of fluid saturated porous rocks. Physics and Chemistry of Porous Media . 1984 被引量:1
  • 6Hudson J A.Overall elastic properties of isotropic materials with arbitrary distribution of circular cracks. Geophysical Journal International . 1990 被引量:1
  • 7Biot MA.Theory of propagation of elastic waves in a fluid-saturated porous solid: Ⅰlow-frequency range. The Journal of The Acoustical Society of America . 1956 被引量:1
  • 8Boit MA.Theory of propagation of elastic waves in a fluid-saturated porous solid, I.Low-frequency range, II. Higherfrequency range. Journal of the Acoustical Society of America, The . 1956 被引量:1
  • 9Biot M A.Generalized theory of acoustic propagation in porous dissipative media. The Journal of The Acoustical Society of America . 1962 被引量:1
  • 10Dvorkin J,Nur A.Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms. Geophysics . 1993 被引量:1

共引文献92

同被引文献62

  • 1崔志文,王克协,曹正良,胡恒山.多孔介质BISQ模型中的慢纵波[J].物理学报,2004,53(9):3083-3089. 被引量:21
  • 2章成广,江万哲,肖承文,陈新林.声波全波资料识别气层方法研究[J].测井技术,2004,28(5):397-401. 被引量:22
  • 3张碧星,王克协,董庆德.双相介质井孔多极源声测井理论及分波分析与全波计算[J].地球物理学报,1995,38(A01):178-192. 被引量:21
  • 4Gassmann F. über die elastizit?t por?ser medien. Veirteljahrsschr Naturforsch Ges Zürich, 1951, 96: 1-23. 被引量:1
  • 5Brown R J S, Korringa J. On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid. Geophys, 1975, 40(4): 609-616. 被引量:1
  • 6Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J Acoust Soc Am, 1956, 28(2): 168-178. 被引量:1
  • 7Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J Acoust Soc Am, 1956, 28(2): 179-191. 被引量:1
  • 8Sams M S, Neep J P, Worthington M H, et al. The measurement of velocity dispersion and frequency-dependent intrinsic attenuation in sedimentary rocks. Geophys, 1997, 62(5): 1456-1464. 被引量:1
  • 9Dvorkin J, Nur A. Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms. Geophys, 1993, 58(4): 524-533. 被引量:1
  • 10Pride S R, Berryman J G, Harris J M. Seismic attenuation due to wave-induced flow. J Geophys Res, 2004, 109(B01201): 1-19. 被引量:1

引证文献8

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部