期刊文献+

基于二次表示的空间目标图像分类 被引量:3

Space Target Image Categorization Based on the Second Representation
下载PDF
导出
摘要 针对空间目标图像的特点,该文提出一种基于局部不变特征的空间目标图像分类方法。该方法首先提取每幅图像的局部不变特征,利用混合高斯模型(GMM)建立全局的视觉模式,然后依据最大后验概率匹配局部特征和视觉模式来构造整个训练集图像的共现矩阵,采用概率潜在语义分析(PLSA)模型得到图像的潜在类别表示来实现图像的二次表示,最后利用SVM算法实现分类。实验结果验证了该方案的有效性。 According to the characteristics of space target image,an novel method of space target image categorization based on local invariant features is proposed.The method extracts firstly local invariant features of each image and uses Gaussian Mixture Model(GMM) to establish global visual modes.Then co-occurrence matrix of the entire training set is constructed by matching local invariant features and visual models with maximum a posteriori probability and Probability Latent Semantic Analysis(PLSA) model is used to obtain latent class vector of images to achieve sencond representation.Finally,the SVM algorithm is used to implement image categorization.The experimental result demonstrates the effectiveness of the proposed method.
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第5期1247-1251,共5页 Journal of Electronics & Information Technology
基金 安徽省自然科学基金(11040606M149)资助课题
关键词 空间目标分类 局部不变特征 视觉模式 二次表示 Space target categorization Local invariant features Visual mode Second reoresentaiton
  • 相关文献

参考文献2

二级参考文献26

共引文献5

同被引文献47

  • 1马君国,赵宏钟,李保国,王远模.基于二维小波变换的空间目标识别算法[J].国防科技大学学报,2006,28(1):57-61. 被引量:6
  • 2高宏娟,潘晨.基于(2D)^2NMF及其改进算法的人脸识别[J].计算机应用,2007,27(7):1660-1662. 被引量:7
  • 3诺布旺典.唐卡中的法器[M].北京:紫禁城出版社,2009,20-170. 被引量:2
  • 4Espinace P, Kollar T, Roy N, et al . Indoor scene recognition by a mobile robot through adaptive object detection[J]. Robotics and Autonomous Systems, 2013, 61(9): 932-947. 被引量:1
  • 5Zhang Y, Zheng X W, Liu G, et al. Semi-supervised manifold learning based multigraph fusion for high-resolution remote sensing image classiffication[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(2): 464-468. 被引量:1
  • 6Zhang Y, Zhang B, Coenen F, et al . One-class kernel subspace ensemble for medical image classification[J]. EURASIPJournal on Advances in Signal Processing, 2014, (17): 1-13. 被引量:1
  • 7Csurka G, Dance C, Fan L, et al . Visual categorization with bags of keypoints[C]. Proceedings of the European Conference on Computer Vision on Statistical Learning in Computer Vision, Prague, Czech Republic, 2004: 59-74. 被引量:1
  • 8Huang Y, Wu Z, Wang L, et al. Feature coding in image classiffication: a comprehensive study[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(3): 493-506. 被引量:1
  • 9Lazebnik S, Schmid C, and PonceJ. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New York, USA, 2006: 2169-2178. 被引量:1
  • 10GernertJ C, GeusebroekJ, Veenman CJ, et al. Kernel codebooks for scene categorization[C]. Proceedings of the European Conference on Computer Vision, Marseille, France, 2008(5304): 696-709. 被引量:1

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部