期刊文献+

一种改进型的人工蜂群算法在云计算的资源分配中的研究 被引量:4

The Study of the Allocation of Resources on an Improved Artificial Bee Colony Algorithm in Cloud Computing
下载PDF
导出
摘要 针对云计算环境下的资源分配和使用不均衡的问题,提出了一种改进型的人工蜂群算法。该算法通过对邻近因子的修改,使得改进后的算法能够有效提高局部搜索能力。通过在3个函数的仿真比较测试中,在搜索精度和性能上有了显著的提高。通过在CloudSim仿真平台上实验发现在云计算模型下,改进型的人工蜂群算法可以有效的减少任务处理请求的平均完成时间,从而提高了云计算下的任务处理的效率。 This paper to the imbalance problem for the allocation and use of resources in the cloud computing environment, proposed an improved artificial bee colony algorithm,the algorithm through modifications to the neighboring factor,making the improved algorithm can effectively improve the local search capabilities.By simulation comparison test in 3 functions,the search precision and performance have been significantly improved.Found by experiment on CloudSim simulation platform in the cloud computing model,the improved artificial bee colony algorithm can effectively reduce the average completion time of the request of the task processing,thereby improving the efficiency of cloud computing task processing.
作者 黄华
出处 《科技通报》 北大核心 2013年第5期142-146,189,共6页 Bulletin of Science and Technology
基金 浙江省教育厅科研项目(Y201122576)
关键词 人工蜂群 云计算 资源分配 artificial bee colony cloud computing resource allocation
  • 相关文献

参考文献11

  • 1Rochwerger B, Breitgand D, Levy E, et al. The Reservoir- model and architecture for open federated cloudcomputing [J]. IBM Journal of Research and Development,2009, 53 (4):1-17. 被引量:1
  • 2Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, et al. Theeuealyptus open-source cloud-computing system[C]// Proceeding of the Crid, 2009:124-131. 被引量:1
  • 3罗红,慕德俊,邓智群,王晓东.网格计算中任务调度研究综述[J].计算机应用研究,2005,22(5):16-19. 被引量:61
  • 4Buyya R. Economic-based distributed resource manage- ment and scheduling for grid computing [D]. Australia: School of Computer Science and Software Engineering, Monash University, 2002. 被引量:1
  • 5Abraham A, Buyyar R , Nath B. Nature's heuristics for scheduling jobs on computational grids[C]//The 8th Inter- national Conference on Advanced Computing and Com- munications. New Delhi: Tata McGraw-Hill Publishing, 2000:45-52. 被引量:1
  • 6林剑柠,吴慧中.基于遗传算法的网格资源调度算法[J].计算机研究与发展,2004,41(12):2195-2199. 被引量:70
  • 7Dorgo M, Maniezzo V, Colorni A. The ants system:opti- mization by a colony of cooperating agents[J].IEEE Trans- actions on System,Man and Cybernetics Part B:Cybernet- ics, 1996,26(1):29-41. 被引量:1
  • 8Kennedy J, Ebethart R. Particle swarm optiomization[C]// Proceeding of IEEE international Conference on Neural Networks.Piscataway,NJ:IEEE ' C6mputer Society,1995: 1942-1948. 被引量:1
  • 9Karaboga D.An idea based on honey bee swarm for nu- merical optimization[R].Teehnical Report-TR06 Erci- yes University,Engineering Faculty.Computer Engineering. De- partment,2005. 被引量:1
  • 10Karaboga D, Basturk B.A powerful and efficient algorithm for numerical function optimization:ArtifiCial Bee Colony (ABC) algorithm [J].Journal of Global Optimization, 2007,39(3):459-471. 被引量:1

二级参考文献25

  • 1Ullman J.NP-Complete Scheduling Problems[J]. Journal of Compu-ter and Syst. Sciences, 1975,10: 384-393. 被引量:1
  • 2Andronikos T, Koziris N.Optimal Scheduling for UET-UCT Grids Into Fixed Number of Processors[C]. Parallel and Distributed Processing 2000 Proceedings, 8th Euromicro Workshop on, 2000.237-243. 被引量:1
  • 3Wensheng Yao, et al. Genetic Scheduling on Minimal Processing Elements in the Grid[M]. Springer-Verlag Heidelberg, 2002. 被引量:1
  • 4Di Martino V, et al. Scheduling in A Grid Computing Environment Using Genetic Algorithms[C]. Parallel and Distributed Processing Symposium, Proceedings International IPDPS, 2002.235-239. 被引量:1
  • 5Di Martino V. Sub Optimal Scheduling in A Grid Using Genetic Algorithms[C].Parallel and Distributed Processing Symposium, 2003.148-154. 被引量:1
  • 6Zhihong Xu, Xiangdan Hou, Jizhou Sun.Ant Algorithm-based Task Scheduling in Grid Computing [C]. IEEE CCECE, 2003. 被引量:1
  • 7Yaojun Han , et al. Resource Scheduling Algorithms for Grid Computing and Its Modeling and Analysis Using Petri Net[C]. Shanghai: The 2nd International Workshop on Grid and Cooperative Computing,2003. 被引量:1
  • 8Chuliang Weng, Xinda Lu. A Cost-based On-line Scheduling Algorithm for Job Assignment on Computational Grids[M]. Springer-Verlag Heidelberg , 2003. 被引量:1
  • 9Junwei Cao, Daniel P Spooner, et al.Agent-based Grid Load Balancing Using Performance-driven Task Scheduling[C]. International Parallel and Distributed Processing Symposium, 2003. 49-58. 被引量:1
  • 10Casanova H Legrand, A Zagorodnov, D Berman.Heuristics for Scheduling Parameter Sweep Applications in Grid Environments[C]. Proceedings of the 9th Heterogeneous Computing Workshop, IEEE, Los Alamitos ,2000.349-363. 被引量:1

共引文献119

同被引文献33

  • 1Zhao RQ, Tang WS. Monkey algorithm for global numerical optimization. Jouranl of Uncertain Systems. 2008, 2(3): 164-175. 被引量:1
  • 2Spall J. Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans. on Automatic Control, 1992, 37(3): 332-341. 被引量:1
  • 3Cichocki A, Amari S. Adaptive blind signal and image processing.- learning algorithms and application[M]. New York.. Wiley Press, 2002. 被引量:1
  • 4Souloumiac A. Nonorthogonal joint diagonalization by combining givens and hyperbolic rotations[J]. IEEE Trans on Signal Processing, 2009, 57(6): 2222-2231. 被引量:1
  • 5Zarzoso V,Comon P. Robust independent component analysis by iterative maximization of the kurtosis contrast with algebraic optimal step size[J].IEEE Trans on Neural Networks, 2010, 21(2): 248-261. 被引量:1
  • 6Liu J Q,Feng D Z,Zhang W W. Adaptive improved natural gradient algorithm for blind source separation[J]. Neural Computation, 2009, 21(3). 872-889. 被引量:1
  • 7Karaboga D, Akay ]3. A comparative study of artificial bee colony algorithm[J].Applied Mathematics and Computation, 2009, 214(1).. 108-132. 被引量:1
  • 8Li Z J, An J P, Sun L, et al. A blind source separation algorithm based on whitening and non-linear decorrelation[J]. 2010 Second International Conference on Computer Modeling and Simulation (ICCMS' 10), 2010, 1: 443-447. 被引量:1
  • 9司锡才,柴娟芳,张雯雯,李利.一种新的盲源分离拟开关算法[J].哈尔滨工程大学学报,2009,30(6):703-707. 被引量:4
  • 10华夏渝,郑骏,胡文心.基于云计算环境的蚁群优化计算资源分配算法[J].华东师范大学学报(自然科学版),2010(1):127-134. 被引量:112

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部