期刊文献+

轮对压装曲线中异常点数据的处理方法 被引量:4

A New Algorithm for Removing Outliers from Press Fitting Curve
下载PDF
导出
摘要 为了去除轮对压装压力信号中的异常点,获得真实的压装曲线,提出了一种异常点数据处理算法,即增量均值法,该算法结合压装压力信号的特点,能较好地识别并剔除异常点数据。在轮对压装过程中的实际应用表明,该算法的效果较好,可以消除干扰对轮对压装曲线的影响,从而减少对压装质量的误判。 In order to remove outliers from press signals acquired in press fitting process and obtain true press fitting curve, a new algorithm,incremental mean algorithm was presented. According to the traits of press signals,the algorithm can distinguish and remove outliers effectively. During practical application process ,the algorithm has received very good effects, eliminated misjudgments of press fitting quality.
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2013年第2期211-214,共4页 Journal of Wuhan University of Technology:Information & Management Engineering
基金 湖北省科学技术研究与开发基金资助项目(201097289)
关键词 轮对压装曲线 异常点 增量均值法 press fitting curve outliers incremental mean algorithm
  • 相关文献

参考文献10

二级参考文献39

  • 1何平.剔除测量数据中异常值的若干方法[J].航空计测技术,1995,15(1):19-22. 被引量:58
  • 2陈华,李继波.异常检测算法综述[J].南宁:大众科技杂志网,2005. 被引量:1
  • 3Hawkin D.Identification of outliers[M].London: Chapman and Hall, 1980. 被引量:1
  • 4Barnett V,Lewis T.Outliers in statistical data[M].[S.l.]:John Wiley, 1994. 被引量:1
  • 5Jiang M F,Tseng S S,Su C M.Two-phase clustering process for outliers detection[J].Pattern Recognition Letters, 2001,22 (6/7) : 691 - 700. 被引量:1
  • 6He Z,Xu X, Deng S.Discovering cluster based local outliers[J].Pattern Recognition Letters,2003,24(9/10):1641-1650. 被引量:1
  • 7Knorr E M,Ng R T.Algorithms for mining distance-based outliers in large datasets[C]//Proceedings of the 2gth International Conference on Very Large Data Bases.San Francisco:Morgan Kaufmann Publishers, 1998 : 392-403. 被引量:1
  • 8Ramaswamy S,Rastogi R,Shim K.Efficient algorithms for mining outliers from large data sets[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data.New York: ACM Press, 2000:427-438. 被引量:1
  • 9Breunig M, Kriegel H-P, Ng R,et al.Lof: Identifying density-based local outliers[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data.New York:ACM Press, 2000:93-104. 被引量:1
  • 10Ma J,Perkins S.Online novelty detection on temporal sequences[C]// Proceedings of the International Conference on Knowledge Discovery and Data Mining.New York:ACM Press,2003:24-27. 被引量:1

共引文献102

同被引文献24

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部