期刊文献+

关于L^2(R^d)中仿射子空间小波标架的一个注记

A Note on Wavelet Frames for Affine Subspaces of L^2(R^d)
下载PDF
导出
摘要 研究了L^2(R^d)的有限生成仿射子空间中小波标架的构造.证明了任意有限生成仿射子空间都容许一个具有有限多个生成元的Parseval小波标架,并且得到了仿射子空间是约化子空间的一个充分条件.对其傅里叶变换是一个特征函数的单个函数生成的仿射子空间,得到了与小波标架构造相关的投影算子在傅里叶域上的明确表达式,同时也给出了一些例子. This paper addresses the construction of wavelet frames in the setting of finitely generated affine subspaces of L^2(R^d). It is proved that an arbitrary finitely generated affine subspace admits a Parseval wavelet frame with finitely many generators. A sufficient condition is obtained for an affine subspace to be a reducing subspace. For a class of affine subspaces generated by a single function whose Fourier transform is a characteristic function, we derive an explicit Fourier-domain expression of the projection operators related to the construction of wavelet frames. Some examples are also provided.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2013年第1期89-97,共9页 Acta Mathematica Scientia
基金 国家自然科学基金(11271037) 北京市自然科学基金(1122008) 北京市教育委员会科技计划面上项目(KM201.110005030)资助
关键词 仿射子空间 Parseval标架 小波标架 Affine subspace Parseval frame Wavelet frame.
  • 相关文献

参考文献10

  • 1Dai X, Diao Y, Gu Q, Han D. Frame wavelets in subspaces of L2(~d). Proc Amer Math Soc, 2002, 130: 3259-3267. 被引量:1
  • 2Zhou F Y, Li Y Z. Multivariate FMRAs and FMRA frame wavelets for reducing subspaces of L2(d). Kyoto J Math, 2010, 50:83-99. 被引量:1
  • 3Weiss G, Wilson E N. The Mathematical Theory of Wavelets, in: Twentieth Century Harmonic Analysis-A Celebration//J S Byrnes(Ed). Proceedings of the NATO Advanced Study Institiute. Dordrecht: Kluwer Academic Publishers, 2001:329-366. 被引量:1
  • 4Dai X, Diem Y, Gu Q. Subspaces with normalized tight frame wavelets in . Proc Amer Math Soc, 2002, 130:1661-1667. 被引量:1
  • 5Dai X, Diem Y, Gu Q, Han D. The existence of subspace wavelet sets. J Comput Appl Math, 2003, 155: 83-90. 被引量:1
  • 6Lian Q F, Li Y Z. Reducing subspace frame multiresolution analysis and frame wavelets. Commun Pure Appl Anal, 2007, 6:741-756. 被引量:1
  • 7Gu Q, Han D. Wavelet frames for (not necessarily reducing) affine subspaces. Appl Comput Harmon Anal, 2009, 27:47-54. 被引量:1
  • 8Christensen O. An Introduction to Frames and Riesz Bases. Boston: Birkh~user, 2003. 被引量:1
  • 9李云章,周凤英.L^2(R^d)中约化子空间上的仿射与伪仿射对偶小波标架[J].数学学报(中文版),2010,53(3):551-562. 被引量:2
  • 10de Boor C, DeVore R, Ron A. Approximation from shift-invariant subspaces of L2 (d). Trans Amer Math Soc, 1994, 341:787-806. 被引量:1

二级参考文献18

  • 1Duffin R. J., Schaeffer A. C., A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 1952, 72(1): 341- 366. 被引量:1
  • 2Young R. M., An Introduction to Nonharmonic Fourier Series, New York: Academic Press, 1980. 被引量:1
  • 3Christensen O., An Introduction to Frames and Riesz Bases, Boston: Birkhauser, 2003. 被引量:1
  • 4Dai X., Diao Y., Gu Q., Han D., Frame wavelets in subspaces of L^2(R^d), Proc. Amer. Math. Soc., 2002, 130(11): 3259-3267. 被引量:1
  • 5Seip K., Regular sets of sampling and interpolation for weighted Bergman spaces, Proc. Amer. Math. Soc., 1993, 117(1): 213-220. 被引量:1
  • 6Hernandez E., Weiss C., A first Course on W Avelets, CRC Press, Boca Raton, FL, 1996. 被引量:1
  • 7Volkmer H., Frames of wavelets in Hardy space, Analysis, 1995, 15(4): 405-421. 被引量:1
  • 8Dai X., Diao Y., Cu Q., Subspaces with normalized tight frame wavelets in R, Proc. Amer. Math. Soc., 2001, 130(6): 1661-1667. 被引量:1
  • 9Dai X., Diao Y., Gu Q., Han D., The existence of subspace wavelet sets, J. Comput. Appl. Math., 2003, 155(1): 83-90. 被引量:1
  • 10Han B., On dual wavelet tight frames, Appl. Comput. Harmon. Anal., 1997, 4(4): 380-413. 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部