期刊文献+

STOCHASTIC DISCRETE-TIME AGE-OF-INFECTION EPIDEMIC MODELS 被引量:1

STOCHASTIC DISCRETE-TIME AGE-OF-INFECTION EPIDEMIC MODELS
原文传递
导出
摘要 We present an epidemic model which can incorporate essential biological detail as well as the intrinsic demographic stochastieity of the epidemic process, yet is very simple, enabling rapid generation of a large number of simulations, A deterministic version of the model is also derived, in the limit of infinitely large populations, and a final-size formula for the deterministic model is proved. A key advantage of the model proposed is that it is possible to write down an explicit likelihood functions for it, which enables a systematic procedure for fitting parameters to real incidence data, using maximum likelihood.
作者 GUY KATRIEL
出处 《International Journal of Biomathematics》 2013年第1期85-104,共20页 生物数学学报(英文版)
关键词 Stochastic discrete-time epidemic model age-of-infection parameter estima- tion. 传染病模型 离散时间 年龄 随机 感染 流行病模型 确定性模型 流行过程
  • 相关文献

参考文献20

  • 1L. J. S. Allen and A. M. Burgin, Comparison of deterministic and stochastic SIS andSIR models in discrete time, Math. Biosci. 163 (2000) 1-33. 被引量:1
  • 2N. T. J. Bailey, The Mathematical Theory of Infectious Diseases and its Applications(Griffin, London, 1975). 被引量:1
  • 3N. G. Becker, Analysis of Infectious Disease Data (Chapman Sz Hall, London, 1989). 被引量:1
  • 4H. Andersson and T. Britton, Stochastic Epidemic Models and Their Statistical Anal-ysis, Lecture Notes in Statistics, Vol. 151 (Springer, New York, 2000). 被引量:1
  • 5F. Brauer, Age of infection in epidemiology models, Electronic J. Differential Equa-tions 12 (2005) 29-37. 被引量:1
  • 6F. Brauer, Age-of-infection and the final size relation, Math. Biosci. Engrg. 5 (2008)681—690. 被引量:1
  • 7F. Brauer, Z. Feng and C. Castillo-Chavez, Discrete epidemic models, Math. Biosci.Engrg. 7 (2010) 1-15. 被引量:1
  • 8D. J. Daley and J. Gani, Epidemic Modelling (Cambridge University Press, Cam-bridge, 1999). 被引量:1
  • 9O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of InfectiousDiseases: Model Building Analysis and Interpretation (Wiley, New York, 2000). 被引量:1
  • 10P. E. Greenwood and L. F. Gordillo, Stochastic epidemic modeling, in Mathe-matical and Statistical Estimation Approaches in Epidemiology, eds. G. Chowell,J. M. Hyman, L. M. A. Bettencourt and C. Castillo-Chavez, Mathematical and Statis-tical Estimation Approaches in Epidemiology (Springer, Dordrecht, 2009), pp. 31-52. 被引量:1

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部