期刊文献+

一维控制系统的最大生存域及人口模型 被引量:1

The Maximal Viability for One-dimensional Control Systems and the Population Model
下载PDF
导出
摘要 研究了控制系统的生存性问题.给出了一维微分包含的生存域求法,用优化方法给出了系统的最大生存域,并将相应结果推广到一维混杂微分包含的生存域情形。基于混杂微分包含建立了一种混杂人口模型,此模型的优点在于可以描述人口的突增或突减,然后针对此模型给出了控制人口数量的方法。最后以北京市人口增长为例说明了模型的有效性。 It is devoted to the viability of control systems. The computation of the viability for a differential inclusion in the one dimensional space is given, and the maximal viable set is presented via optimization method. Then the result is extended to a hybrid system. A population hybrid model is proposed based on an impulse differential inclusion which can describe the abrupt increasing or decreasing population. Finally, a method of controlling the population is presented by means of the result on the hybrid system, and Beijing is taking as an example to illustrate it.
作者 陈征 高岩
出处 《控制工程》 CSCD 北大核心 2013年第3期540-543,552,共5页 Control Engineering of China
基金 National Science Foundation of China(11171221 40901241) Zhejiang Province Department of Education Scientific Research Project(Y201016275)
关键词 生存域 微分包含 混杂系统 混杂微分包含 viability differential inclusions hybrid systems impulse differential inclusions
  • 相关文献

参考文献16

  • 1Stone L, Hart D. Effects of immigration on the dynamics of simple population models [ J ]. Theoretical Population Biology, 1999,53 : 227-234. 被引量:1
  • 2Schrofer K P,Pauli E M,Napiwotzki R. A population model of the solar neighbourhood thin disc white dwarfs/J J. Monthly Notices of the Royal Astronomical Society ,2004,34:727-736. 被引量:1
  • 3Deborah T. Crouse, Larry B. Crowder and Hal Caswell. A Stage- Based Population Model for Loggerhead Sea Turtles and Implica- tions for Conservation[ J ]. Ecology, 1987,68 : 1412-1423. 被引量:1
  • 4Thomas J. Espenshade, Leon F. Bouvier and W. Brian Arthur . Im- migration and the Stable Population Model[ J]. Demography, 1982, 19 : 125-133. 被引量:1
  • 5Lygeros J. An overview of reasearch areas in hybrid control [ J ]. Proceeding of the 44th IEEE Conference on Decision and Control, 2005:5600-5605. 被引量:1
  • 6Coquelin P AMartin S, Munos R. A dynamic programming approach to viability problems, Proceeding of the 2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning [ J],178-184. 被引量:1
  • 7Aubin J. -P. Viability Theory [ M ]. Birkh"auser, Boston, 1991. 被引量:1
  • 8Aubin J. -P. and Frankowska H. "Set Valued Analysis", Birkh"aus- er[ M ]. Boston, 1990. 被引量:1
  • 9Blanchini F. Set invariance in control [ M ]. Automatica, 1999,35 : 1747-1767. 被引量:1
  • 10Aubin J P, Lygeros J, Quincampoix M, Sastry S and Seube N. Im- pulse differential inclusions:a viability approach to hybrid systems [ M ]. IEEE transaction on automatic control ,2002,47:2-20. 被引量:1

同被引文献19

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部