期刊文献+

MODIS数据地表温度反演劈窗算法比较 被引量:11

A Comparison of Two Split-window Algorithms for Retrieving Land Surface Temperature from MODIS Data
原文传递
导出
摘要 针对MODIS数据,分析比较了QIN和Wan-Dozier两种劈窗算法地表温度(LST)反演精度和误差分布。首先利用辐射传输模型MODTRAN4.0,结合TIGR大气廓线数据,评价两种算法绝对精度,然后基于误差传递理论分析评价二者的总精度,最后对两种算法的LST反演结果进行比较。研究表明针对所有廓线数据,两种算法绝对精度相差不大,但Wan-Dozier算法绝对精度受地表温度和水汽含量变化的影响程度要大于QIN算法;两种算法总精度相差不大,且主要误差源均为算法绝对精度和地表比辐射率精度,QIN算法反演结果对地表比辐射率的敏感性要略高于Wan-Dozier算法;两种算法得到研究区LST分布情况基本一致,均可表现空间LST分布差异,其中水体和裸土的LST反演结果差异较大,城镇和植被平均温度差异在0.5K以内。 This study presents an evaluation of two split-window algorithms applied to MODIS data for LST retrieval,including QIN and Wan-Dozier split-window algorithm.The absolute accuracy and the total errors of two algorithms were compared and analysed using data simulated by MODTRAN 4.0 code with TIGR data input.The results show that the bias of the absolute accuracy and the total errors between two algorithms were both small in all sample data,however,the absolute accuracy of Wan-Dozier algorithm was more effected by the change of input LST and water vapor than that of QIN algorithm.The main error sources for both two algorithms were the absolute accuracy and the uncertainty of the land surface emissivity.Example regional LST produced by two algorithms using MODIS data was compared.The results show that great consistency of derived LST exists between the two algorithms in the study area.The characteristics of LST spatial distribution pattern can be clearly identified.Larger LST bias of the two algorithms is found in regions covered by water and bare soil,whereas the mean bias is within 0.5 K in town and vegetation surface.
出处 《遥感技术与应用》 CSCD 北大核心 2013年第2期174-181,共8页 Remote Sensing Technology and Application
基金 全球变化研究国家重大科学研究计划资助(2010CB9506030) 国家自然科学基金项目(40971202 41001209)
关键词 MODIS 地表温度 劈窗算法 遥感反演 MODTRAN MODIS Land Surface Temperature(LST) Split-window algorithm Remote sensing retrieval MODTRAN
  • 相关文献

参考文献10

二级参考文献77

共引文献1036

同被引文献154

引证文献11

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部