期刊文献+

软计算方法在焊接数学建模和参数优化中的应用 被引量:1

Application of Soft Computing in Mathematical Modelling and Parameter Optimization of Welding
下载PDF
导出
摘要 焊接是一个高度非线性和具有大量不确定性因素的物理过程,使用传统的数学模型法和回归分析方法很难对焊接过程进行完整的描述。软计算作为一种新兴的智能化计算方法,以其高容错性、自学习和并行处理等优势越来越多的应用于焊接领域。本文在对相关文献调研的基础上,阐述了软计算方法在焊接各个领域里的研究现状和应用前景。 Welding is a physical process with highly nonlinearity and massive stochastic uncertainty, so it is difficult to evaluate the problem comprehensively by using traditional mathematical method and regression analysis. As a new developed intelligent method, the soft computing teclmiques were widely used in modeling and optimization of welding industry,due to the advantages of high fault tolerance, self learning ability and parallel processing. The present research situation and application prospects of soft computing techniques in different aspects of welding was illustrated based on the extensive investigation.
作者 田亮 罗宇
出处 《热加工工艺》 CSCD 北大核心 2013年第9期198-200,204,共4页 Hot Working Technology
关键词 软计算 焊接 数学建模 参数优化 soft computing welding mathematical modelling parameter optimization
  • 相关文献

参考文献26

  • 1李晓延,武传松,李午申.中国焊接制造领域学科发展研究[J].机械工程学报,2012,48(6):19-31. 被引量:135
  • 2谭建豪,章兢,胡章谋.软计算原理及其工程应用[M].北京:中国水利水电出版社,2011. 被引量:1
  • 3Pratihar D K. Soft Computing[M]. Alpha Science Intl Ltd, 2OO8. 被引量:1
  • 4Sathiya P, Panneerselvam K. Optimization of laser welding process parameters for super austenitic stainless steel using artificial neural networks and genetic algorithm [J]. Materials and Design, 2012, 36: 490-498. 被引量:1
  • 5Sathiya P, Aravindan S. Optimization of friction welding pa- rameters using evolutionary computational techniques[J]. Jour- nal of Materials Processing Technology, 2009,209 : 2576-2584. 被引量:1
  • 6Acherjee B, Mondal S. Application of artificial neural net- work for predicting weld quality in laser transmission welding of thermoplastics [J]. Applied Soft Computing, 2011,11: 2548-2555. 被引量:1
  • 7Wang Xiao , 2:hang Cheng. Modeling and optimization of joint quality for laser transmission joint of thermoplastic using an artificial neural network and a genetic algorithm[J]. Optics and Lasers in Engineering, 2012,50: 1522-1532. 被引量:1
  • 8Park Y W, Rhce S. Process modeling and parameter optimiza- tion using neural network and genetic algorithms for aluminum laser welding automation[J]. Int J Adv Manuf Technol, 2008, 37,1014-1021. 被引量:1
  • 9Okuyueu H, Kurt A. Artificial neural network application to the friction stir welding of aluminum plates [J]. Materials and Design, 2007, 28: 78-84. 被引量:1
  • 10Pal S, Pal S K. Artificial neural network modeling of weld joint strength prediction of a pulsed metal inert gas welding pro- cess using arc signals [J]. Journal of materials processing tech- nology, 2008, 202: 464-474. 被引量:1

二级参考文献10

共引文献134

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部