期刊文献+

轨迹数据的多因素概化

Multi-factor generalization of trajectory data
下载PDF
导出
摘要 针对轨迹数据概化大多只考虑空间位置因素,而忽略了其他轨迹特性,从而造成概化前后信息丢失过大的问题,提出轨迹数据的多因素概化方法.该方法综合考虑了空间位置、时间、速度、加速度和方向角等因素,首先,通过在轨迹点聚类的距离约束中加入多因素对DBSCAN算法进行改进.然后,用类簇的代表点进行区域划分,连接轨迹经过的区域生成概化轨迹.由于多因素下的轨迹概化缺少统一的衡量标准,从信息丢失和概化前后效果比较2个方面,提出多因素下轨迹概化效果的度量方法.飓风数据实验表明,所提方法生成的概化轨迹信息丢失明显减少,聚类结果更加接近原始轨迹. In order to solve the problem that most of current trajectory data generalization methods only consider the spatial characteristic and ignore other trajectory features, thus resulting in informa- tion loss, a method of multiple-factor generalization of trajectory data (TRMGEN) is proposed, which considers trajectory features, such as spatial location, time, velocity, direction angle and ac- celeration, etc. First, the DBSCAN algorithm is improved by adding factors into distance constraint when clustering the points. Then, the representative points of clusters are used in the region divi- sion, and the regions are connected to generate the generalized trajectory. As the trajectory multi- factor generalization lacks unified measure standard, from the aspects of information loss and the similarity with original trajectory, a method for measuring generalization effect is presented. Experi- mental results on the Hurricane dataset show that the TRMGEN can greatly reduce the information loss of the generalized trajectory, and the cluster result of the generalized trajectory is closer to the original trajectory.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第A02期271-275,共5页 Journal of Southeast University:Natural Science Edition
基金 国家教育部博士点基金资助项目(20110095110010)
关键词 轨迹概化 多因素 信息丢失量 轨迹聚类 trajectory generalization multiple-factor information loss trajectory clustering
  • 相关文献

参考文献13

  • 1Hoh B, Gruteser M, Herring R, et al. Virtual trip lines for distributed privacy-preserving traffic monitoring [C]//Proceedings of the 6th International Conference on Mobile Systems, Applications, and Services. New York: ACM, 2008:15-28. 被引量:1
  • 2Hashem T, Kulik L, Zhang R. Privacy preserving mov- ing KNN queries[EB/OL]. (2011) [2012-03-10]. ht- tp ://arxiv. org/abs/1104. 2756 abs/1104. 2756. 被引量:1
  • 3Adrienko N, Adrienko G. Spatial generalization and ag- gregation of massive movement data[ J]. IEEE Transac- tions on Visualization and Computer Graphics, 2011, 17 (2) : 205 -219. 被引量:1
  • 4Monreale A, Andrienko G, Andrienko N, et al. Move- ment data anonymity through generalization [ J ]. Transactions on Data Privacy, 2010, 3(2) : 91 - 121. 被引量:1
  • 5Martinez-Bea S. Trajectory anonymization from a time series perspective [ C ]//IEEE International Conference on Fuzzy Systems. Taipei, China, 2011 : 401 -408. 被引量:1
  • 6Sherkat R, Li J, Mamoulis N. Efficient timestamped e- vent sequence anonymization[ R]. Hong Kong: Depart- ment of Computer Science, the University of Hong Kong, 2011 : 1 - 30. 被引量:1
  • 7Domingo-Ferrer J, computer scientists : microaggregation to Proceedings of the Dublin, 2011 : 1082 Sramka M. Disclosure control by an overview and an application of mobility data anonymization [ C ]// 58th World Statistical Congress. - 1086. 被引量:1
  • 8Dodge S, Weibel R, Forootan E. Revealing the physics of movement: comparing the similarity of movement characteristics of different types of moving objects [ J ]. Computers, Environment and Urban Systems, 2009, 33 (6) : 419-434. 被引量:1
  • 9Junejo I N, Javed O, Shah M. Multi feature path modeling for video surveillance [ C ]//Proceedings of the 17th International Conference on Pattern Recognition. Cambridge, UK, 2004: 716-719. 被引量:1
  • 10Laube P, Purves R S. How fast is a cow. Cross-scale analysisof movement data [ J ]. Transactions in GIS, 2011, 15(3) : 401 -418. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部