摘要
Mechanical stress and patterned surface of the scaffolds has been recognized as a crucial factor in determining cell func- tionality and tissue development, which in turn can direct the cell responses. In this study, fibroblasts M-3T3 in three-dimensional (3D) honeycomb patterning Chitosan/Poly(L-Lactic Acid) (CS/PLLA) composites was stimulated by a 15% sinusoidal (1 Hz) strain applied by a biodynamic test instrument. The effects of mechanical stimulus on the cell proliferation and basic Fibroblast Growth Factor (bFGF) secretion were studied in comparison to the non-strain groups and blank control. Results show that fibroblasts are able to sense the mechanical stimulation and respond, resulting in a time dependent increase of bFGF secretion and promoting cell proliferation. Moreover, the cells seeded in the scaffolds showed a higher cell proliferation and bFGF secretion. These findings support the hypothesis that suitable mechanical stimulus has positive effect on fibroblasts, and such a 3D honeycomb patterned scaffold may play a positive role in regulating cell behaviors in vitro.
Mechanical stress and patterned surface of the scaffolds has been recognized as a crucial factor in determining cell func- tionality and tissue development, which in turn can direct the cell responses. In this study, fibroblasts M-3T3 in three-dimensional (3D) honeycomb patterning Chitosan/Poly(L-Lactic Acid) (CS/PLLA) composites was stimulated by a 15% sinusoidal (1 Hz) strain applied by a biodynamic test instrument. The effects of mechanical stimulus on the cell proliferation and basic Fibroblast Growth Factor (bFGF) secretion were studied in comparison to the non-strain groups and blank control. Results show that fibroblasts are able to sense the mechanical stimulation and respond, resulting in a time dependent increase of bFGF secretion and promoting cell proliferation. Moreover, the cells seeded in the scaffolds showed a higher cell proliferation and bFGF secretion. These findings support the hypothesis that suitable mechanical stimulus has positive effect on fibroblasts, and such a 3D honeycomb patterned scaffold may play a positive role in regulating cell behaviors in vitro.
基金
Acknowledgement The work was supported by the National Natural Science Foundation of China (Gram no. 30900307 and 81171459) and the Guangzhou "Zhujiang River" Excellent Young Scientists Program (2011).