期刊文献+

Impacts of air pressure on the evolution of nanosecond pulse discharge products 被引量:2

Impacts of air pressure on the evolution of nanosecond pulse discharge products
下载PDF
导出
摘要 Based on the nonequilibrium plasma dynamics of air discharge, a dynamic model of zero-dimensional plasma is established by combining the component density equation, the Boltzmann equation, and the energy transfer equation. The evolution properties of nanosecond pulse discharge (NPD) plasma under different air pressures are calculated. The results show that the air pressure has significant impacts on the NPD products and the peak values of particle number density for particles such as O atoms, 03 molecules, N2(A3) molecules in excited states, and NO molecules. It increases at first and then decreases with the increase of air pressure. On the other hand, the peak values of particle number density for N2(B3) and N2(C3) molecules in excited states are only slightly affected by the air pressure. Based on the nonequilibrium plasma dynamics of air discharge, a dynamic model of zero-dimensional plasma is established by combining the component density equation, the Boltzmann equation, and the energy transfer equation. The evolution properties of nanosecond pulse discharge (NPD) plasma under different air pressures are calculated. The results show that the air pressure has significant impacts on the NPD products and the peak values of particle number density for particles such as O atoms, 03 molecules, N2(A3) molecules in excited states, and NO molecules. It increases at first and then decreases with the increase of air pressure. On the other hand, the peak values of particle number density for N2(B3) and N2(C3) molecules in excited states are only slightly affected by the air pressure.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第5期363-368,共6页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos. 51106179 and 51276196)
关键词 PLASMA air pressure EVOLUTION numerical simulation plasma, air pressure, evolution, numerical simulation
  • 相关文献

参考文献1

同被引文献35

  • 1穆勇,郑洪涛,谭智勇,李智明,周春良.等离子点火器三维燃烧流场的有限速率化学反应数值模拟[J].汽轮机技术,2004,46(6):431-433. 被引量:2
  • 2宋文艳,刘伟雄,贺伟,白菡尘.超声速燃烧室等离子体点火实验研究[J].实验流体力学,2006,20(4):20-24. 被引量:29
  • 3Bera K, Farouk B, Vitello P. Inductively Coupled Ra- dio Frequency Methane Plasma Simulation [J]. Journal of Physics D: Applied Physics, 2001, 34 ( 10): 1479- 1481. 被引量:1
  • 4Bera K, Farouk B, Lee Y H. Effects of Design and Op- erating Variables on Process Characteristics in a Meth- ane Discharge: a Numerical Study [J]. Plasma Sources Science and Technology, 2001, 10(2): 211-214. 被引量:1
  • 5Meezan N B, Hargus W A, Cappelli M A. Anomalous Electron Mobility in a Coaxial Hall Discharge Plasma [J]. PhysicalReview E, 2001, 63. 被引量:1
  • 6Hagelaar G J M, Pitchford L C. Solving the Boltzmann Equation to Obtain Electron Transport Coefficients anti Rate Coefficients for Fluid Models [J]. Plasma Sources Science and Technology, 2005, 14: 722-733. 被引量:1
  • 7Flitti A, Pancheshnyi S. Gas Heating in Fast Pulsed Discharges in N2-O2 Mixtures [J]. The European Physi- cal Journal Applied Physics, 2009, 45 (2): 21001- 21008. 被引量:1
  • 8Campbell C S, Egolfopoulos F N. Kinetics Paths to Rad- ical-Induced Ignition of Methane/Air Mixtures [ J ]. Com- bustion Science and Technology, 2005, 177( 12): 2275-2298. 被引量:1
  • 9Wang T, Gao X D, Li W. Characterization of the Plas- ma Density with Two Artificial Neural Network Models [J]. Chinese Physics B, 2010, 19(7). 被引量:1
  • 10Seery D J, Bowman C T. An Experimental and Analyti- cal Study of Methane Oxidation Behind Shock Waves [J]. Combustion and Flame, 1970, 14( 1): 37-47. 被引量:1

引证文献2

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部