期刊文献+

基于区域形状与运动特征的实时行为识别 被引量:2

Real-time Action Recognition Based on Zone Shapes and Motion Features
下载PDF
导出
摘要 提出了一种基于推广的Hu不变矩特征的实时行为识别方法。首先,对Hu不变矩进行改进,使其在离散情况下同时具有平移、旋转和比例不变性。然后,结合运动目标的速度将目标行为刻画成结合Hu矩新特征和速度特征的13维特性向量。其中,Hu矩新特征表征了行为的区域形状特性,速度特征反映了行为的运动特性。随后采用预先定义的一些行为作为先验知识样本训练支持向量机,并最后使用其对待检测行为进行分类以达到行为识别的效果。所提方法计算效率高,能够实时检测人体行为。在处理实拍视频数据的实验中,该方法表现出了理想的处理效率以及识别精度。 This paper presented an efficient action recognition method based on Hu moment invariant features. Firstly, the Hu moment invariants were refined to be new features that are translation, rotation and scale invariant. Then an ac- tion was characterized by a 13-dimensional feature vector consisting of both Hu moment features and action speed fea- tures. The Hu moment features represent the Zone shape of the action, and the action speed features exhibit certain mo- tion characteristics. Finally, a support vector machine(SVM), which is trained using labeled action frames, was applied to classify test sample actions into different categories. The proposed method is performed on real-world videos and a- chieves acceptable recognition rates with desirable computational efficiencies.
出处 《计算机科学》 CSCD 北大核心 2013年第5期261-265,共5页 Computer Science
基金 国家自然科学基金重大研究计划(91024026) 国家自然科学基金(61003123 61105005) 中央高校基本科研业务费(ZYGX2011X014 23401039)专项资金资助
关键词 行为识别 区域形状 HU不变矩 运动特征 Behavior recognition Zone shape Hu moment invariant Motion feature
  • 相关文献

参考文献15

  • 1Bobick A F,Davis J W. The recognition of human movement u- sing temporal templates[C]//IEEE International Conference on Computer Vision. 2009. 被引量:1
  • 2Shechtman E, Irani M. Space-timebeluavior based correlation [ C ] // IEEE Conference on Computer Vision and Pattern Recognition. 2009. 被引量:1
  • 3Rodriguez M D,Ahmed J,Shah NL Action roach a spatio-tempo- ral maximum average correlation height filter for action recogni- tion[C] // IEE'E Conference on Computer Vision and Pattern Recognition. 2008. 被引量:1
  • 4Hu Yu-xiao, Cao Liang-liang, Lv Feng-jun, et al. Action detec- tion in complex scenes with spatial and temporal ambiguities[C]// IEEE International Conference on Computer Vison. 2009. 被引量:1
  • 5Hu M K. Visual pattern recognition by moment invariants [C]// IRE Transaction Information theory. 1962 : 179-182. 被引量:1
  • 6Wong Y R. Scene matching with invariant moments[J]. Com- puter Graphics and Image Processing, 1978,8 : 16-24. 被引量:1
  • 7丁明跃,常金玲,彭嘉雄.不变矩算法研究[J].数据采集与处理,1992,7(1):1-9. 被引量:63
  • 8吕洪涛,周继成.离散状态下的不变矩算法研究[J].数据采集与处理,1993,8(2):151-155. 被引量:21
  • 9刘进,张天序.图像不变矩的推广[J].计算机学报,2004,27(5):668-674. 被引量:47
  • 10印勇,张毅,刘丹平.基于改进Hu矩的异常行为识别[J].计算机技术与发展,2009,19(9):90-92. 被引量:7

二级参考文献19

  • 1吕洪涛,周继成.离散状态下的不变矩算法研究[J].数据采集与处理,1993,8(2):151-155. 被引量:21
  • 2丁明跃,彭嘉雄.旋转和比例不变的机器人视觉研究[J].数据采集与处理,1989,4(3):19-26. 被引量:1
  • 3王陈阳,周明全,耿国华.基于自适应背景模型运动目标检测[J].计算机技术与发展,2007,17(4):21-23. 被引量:19
  • 4Li Y, Xu C J, Liu J Z. Detecting Irregularity in Video Using Kernel Estimation and K- D Trees[ C]//Proceedings of the 14th annual ACM international conference on Multimedia. New York:ACM press, 2006:639 - 642. 被引量:1
  • 5Zhou H,Kmber D. Unusual Event Detection Via Multi- camera Video Mining[C] #Proceedings of the 18th International Conference on Pattern Recognition- Volume 03. Washington, DC: IEEE Computer Society, 2006:1161 - 1166. 被引量:1
  • 6Zhang D, Daniel O P, Beng D S, et al. Semi - supervised Adapted HMMs for Unusual Event Detection[C]//Proceedings of the 2005 IEEE Computer Society Connference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2005:611 - 618. 被引量:1
  • 7Wu X Y, Ou Y S, Qian H H, et al. A detection system for human Abnormal behavior[ C]//IEEE International Conference on Intelligent Robots and Systems. New York: IEEE Intelligent Robots and Systems, 2005 :1204 - 1208. 被引量:1
  • 8Hu M.K.. Visual pattern recognition by moment invariants. IRE Transactions on Information Theory,1962,(8):179~182 被引量:1
  • 9Rothe I.,Susse H.,Voss K..The method of normalization to determine invariants. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(4):366 被引量:1
  • 10Abu-Mostafa Y.S.,Psaltis D.. Recognitive aspects of moment invariants. IEEE Transactions on Pattern Analysis and Machine Intelligence,1984,6(6):698~706 被引量:1

共引文献123

同被引文献21

  • 1徐立彬.运动员技战术模式识别特征及神经机制研究进展[J].南京体育学院学报(自然科学版),2013,12(5):47-55. 被引量:2
  • 2殷涛,葛元,王林泉.基于几何矩的字母手势识别算法[J].计算机工程,2004,30(18):127-129. 被引量:11
  • 3徐战武,朱淼良.基于颜色的皮肤检测综述[J].中国图象图形学报,2007,12(3):377-388. 被引量:29
  • 4Licsar A,Sziranyi T.User-adaptive hand gesture recognition system with interactive training[J].Image and Vision Computing,2005,23(12):1102-1114. 被引量:1
  • 5Phung S,Bouzerdoum A,Chai D.Skin segmentation using color pixel classification:analysis and comparison[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(1):148-154. 被引量:1
  • 6Gamal M,Abdul K,Sallam E.Hand Gesture Recognition using Fourier Descriptors[C]//International Conference on Computer Engineering and Systems,Cairo,EGYPT,2013:274-279. 被引量:1
  • 7Dhruva N,Rupanagudi S,Sachin S,et al.Novel Segmentation Algorithm for Hand Gesture Recognition[C]//IEEE International Multi Conference on Automation Computing,Control,Communication and Compressed Sensing,Kottayam,INDIA,2013:383-388. 被引量:1
  • 8Pramod K,Prahlad V,Ai P.Attention Based Detection and Recognition of Hand Postures against Complex Backgrounds[J].International Journal of Computer Vision,2013,101(3):403-419. 被引量:1
  • 9Hsu R,Mottaleb A,Jain A.Face detection in color images[J].Pattern Analysis and Machine Intelligence,2002,24(5):696-706. 被引量:1
  • 10Liu Y,Zhang L,Zhang S.A Hand Gesture Recognition Method Based on Multi-Feature Fusion and Template Matching[C]//International Workshop on Information and Electronics Engineering,Harbin,PEOPLES R CHINA,2012:1678-1684. 被引量:1

引证文献2

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部