期刊文献+

一种动态时间弯曲距离的时延调控基因相似度量聚类方法 被引量:1

An approach to mining time-lagged coregulated gene based on DTW
原文传递
导出
摘要 针对传统的基于距离/相关系数的相似性度量方法无法有效度量基因间的时延表达特性,为了更加准确地刻画基因间的共调控关系,提出一种基于动态时间弯曲距离(DTW)的相似性度量方法,并结合可指定类数的仿射传播聚类算法进行聚类.将该算法用于人工合成数据和真实的酵母基因数据集,实验结果表明,相对于其它经典聚类算法,本文所提算法能得到更好的聚类结果. Cluster methods plays an important role in the gene expression data analysis,but the static similarity measure which is based on the distance or the correlation coefficient is not effective to measure the time-lagged relationship between genes.In order to mine the time-lagged gene,this paper proposes a new similarity measure which is based on the DTW algorithm.The new similarity measure is statistically analyzed by integrating it with given number of clusters by affinity propagation clustering.Additionally,experiments on synthetic dataset and real gene expression dataset show that the proposed algorithm has better clustering effect.
作者 薛劼 郭红
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第2期158-163,共6页 Journal of Fuzhou University(Natural Science Edition)
基金 福建省自然科学基金资助项目(2009J01283)
关键词 基因表达 动态时间弯曲距离(DTW) 时延 仿射传播聚类 gene expression DTW time lag affinity propagation clustering
  • 相关文献

参考文献19

  • 1Kaytoue M, Kuznetsov S O, Napoli A, et al. Mining gene expression data with pattern structures in formal concept analysis [ J ]. Information Sciences, 2011, 181 : 2 -3. 被引量:1
  • 2Heyer L J, Kruglyak S, Yooseph S. Exploring expression data: identification and analysis of co - expressed genes [ J ]. Medi- cine, 1999, 3:1 106-1 115. 被引量:1
  • 3Lercher M J, Blumenthal T, Hurst L D. Coexpression of neighboring genes in caenorhabditis elegans, and duplicate genes[ J]. Genome Research, 2003, 13 : 238 - 243. 被引量:1
  • 4Bandyopadhyay S, Bhattachary -ya M. A biologically inspired measure for coexpression analysis [ J ]. on Compu- Tational Biology and Bioinformatics, 2011, 8 (4) : 1 -3. 被引量:1
  • 5is mostly due to operons IEEE/Acm Transactions Ucar D, Altiparmak F, Ferhatsmanoglu H, et al. Mutual information based extrinsic similarity for microarray analysis [ J ]. Bioinformatics and Computational Biology, 2009, 562:424 -436. 被引量:1
  • 6Gupta N, Aggarwal S. MIB: using mutual information for biclustering gene expression data[ J]. Pattern Recognition, 2010, 43 : 2 692 - 2 697. 被引量:1
  • 7Yu Hai - yuan, Luscombe N M, Qian Jiang, et al. Genomic analysis of gene expression relationships in transcriptional regulato- ry networks[J]. Trends Genet, 2003, 19(8) : 422 -427. 被引量:1
  • 8董晓莉..时间序列数据挖掘相似性度量和周期模式挖掘研究[D].天津大学,2007:
  • 9Wang Guo - ren, Yin Lin - jun, Zhao Yu - hai, et al. Efficiently mining time - delayed gene expression patterns [ J ]. IEEE Transactions on Systems, Man, and Cybernetics- Part B: Cybernetics, 2010, 40(2) : 1 -2. 被引量:1
  • 10Kiddle S J, Windram O P F, McHattie S, et al. Temporal clustering by affinity propagation reveals transcriptional modules in Arabidopsis thaliana[ J]. Bioinforamtics, 2010, 26( 3 ) : 1 - 2. 被引量:1

同被引文献19

引证文献1

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部