摘要
Background The mechanism of retinal neovascularization is not understood completely. Many growth factors are involved in the process of retinal neovascularization, such as vascular endothelial growth factor (VEGF) and pigment epithelium-deprived factor (PEDF), which are the representatives of angiogenic and antiangiogenic molecules respectively. Oxygen induced retinopathy (OIR) is a useful model to investigate retinal neovascularization. The present study was conducted to investigate the feasibility of small interference RNA (siRNA) targeting VEGF gene in attenuating oxygen induced retinopathy (OIR) by regulating VEGF to PEDF ratio (VEGF/PEDF). Methods In vitro, cultured EOMA cells were transfected with VEGF-siRNA (psi-HITM/EGFPNEGF siRNA) and LipofectamineTM 2000 for 24, 48, and 72 hours, respectively. Expression of VEGF mRNA was evaluated by real time polymerase chain reaction (PCR) and the level of VEGF protein was analyzed by Western blotting. In vivo, OIR model mice were established, the mice (C57BL/6J) received an intra-vitreal injection of μ1 of mixture of psi-HITM/EGFPNEGF siRNA and Lipofectamine 2000. Expressions of retinal VEGF and PEDF protein were measured by Western blotting, retinal neovascularization was observed by fluorescein angiography, and quantified. Results In vitro psi-HITM/EGFPNEGF siRNA treatment significantly reduced VEGF mRNA and protein expression. In vivo, with decreased VEGF and VEGF-PEDF ratio, significant attenuation of neovascular tufts, avascular regions, tortuous, and dilated blood vessels were observed in the interfered animals. Conclusions VEGF plays an important role in OIR, and the transfection of VEGF-siRNA can effectively downregulate VEGF expression in vivo, accompanied by the downregulation of VEGF-PEDF ratio, and simultaneous attenuation of retinal neovascularization was also observed. These findings suggest that VEGF/PEDF may serve as a potential target in the treatment of retinal neovascularization and RNA interference targeting VE
Background The mechanism of retinal neovascularization is not understood completely. Many growth factors are involved in the process of retinal neovascularization, such as vascular endothelial growth factor (VEGF) and pigment epithelium-deprived factor (PEDF), which are the representatives of angiogenic and antiangiogenic molecules respectively. Oxygen induced retinopathy (OIR) is a useful model to investigate retinal neovascularization. The present study was conducted to investigate the feasibility of small interference RNA (siRNA) targeting VEGF gene in attenuating oxygen induced retinopathy (OIR) by regulating VEGF to PEDF ratio (VEGF/PEDF). Methods In vitro, cultured EOMA cells were transfected with VEGF-siRNA (psi-HITM/EGFPNEGF siRNA) and LipofectamineTM 2000 for 24, 48, and 72 hours, respectively. Expression of VEGF mRNA was evaluated by real time polymerase chain reaction (PCR) and the level of VEGF protein was analyzed by Western blotting. In vivo, OIR model mice were established, the mice (C57BL/6J) received an intra-vitreal injection of μ1 of mixture of psi-HITM/EGFPNEGF siRNA and Lipofectamine 2000. Expressions of retinal VEGF and PEDF protein were measured by Western blotting, retinal neovascularization was observed by fluorescein angiography, and quantified. Results In vitro psi-HITM/EGFPNEGF siRNA treatment significantly reduced VEGF mRNA and protein expression. In vivo, with decreased VEGF and VEGF-PEDF ratio, significant attenuation of neovascular tufts, avascular regions, tortuous, and dilated blood vessels were observed in the interfered animals. Conclusions VEGF plays an important role in OIR, and the transfection of VEGF-siRNA can effectively downregulate VEGF expression in vivo, accompanied by the downregulation of VEGF-PEDF ratio, and simultaneous attenuation of retinal neovascularization was also observed. These findings suggest that VEGF/PEDF may serve as a potential target in the treatment of retinal neovascularization and RNA interference targeting VE