期刊文献+

利用改进简化PSO优化设计多层吸波材料 被引量:2

Optimal Design of Multi-layer Absorbers Based on Improved Simple PSO Algorithm
下载PDF
导出
摘要 现有的粒子群优化算法(PSO)在传统多层平板吸波材料的优化过程中收敛速度慢,寻优精度低。为了改善设计的收敛速度和寻优精度,利用改进简化粒子群优化方法(ISPSO)在传输线法计算模型基础上对多层吸波材料进行了优化设计。优化设计结果表明,在0.8~6GHz范围内,5层吸波材料的反射系数在-22.98 dB以下,得到的结果比现有文献好。 In the optimization of traditional multi-layer absorbing materials, the existing Particle Swarm Opti- mization(PSO) algorithms have slow convergence and low accuracy. In order to improve the convergence speed and optimization accuracy, based on the multi-layer absorber computational model of the transmission line method, an improved simplified particle swarm optimization method(ISPSO) is applied to optimize the multi-lay- er absorbing materials. The simulation results show that the reflection coefficient is below - 22.98 dB within 0.8 - 6 GHz. Compared with the original literature, the optimal results are excellent.
出处 《电讯技术》 北大核心 2013年第4期518-521,共4页 Telecommunication Engineering
基金 船舶工业国防科技预研基金项目(10J3.5.2) 江苏高校优势学科建设工程资助项目~~
关键词 吸波材料 粒子群优化 收敛速度 优化设计 absorber particle swarm optimization convergence speed optimal design
  • 相关文献

参考文献6

二级参考文献39

共引文献361

同被引文献24

  • 1刘列,张明雪,胡连成,于翘.薄、轻、宽吸波涂层的优化设计[J].宇航材料工艺,1996,26(4):8-16. 被引量:10
  • 2袁承勋,周忠祥,秦汝虎,孙洪国,王云良,段雪松,张海丰.实现轻、薄、宽涂层吸波材料的技术途径[J].哈尔滨工业大学学报,2007,39(6):956-959. 被引量:8
  • 3Cheng X Y, Zhong X Z, Zhang J W, et al. Properties of propagation of electromagnetic wave in a multilayer radar-absorbing structure withplasma- and radar-absorbing material. IEEE Transactions on Plasma Science, 2011 ,39(9) : 1768-1775. 被引量:1
  • 4刘鹤勇.给予PSO的吸波材料优化设计及有孔矩形腔屏蔽效能分析.北京:北京邮电大学,2010. 被引量:1
  • 5Taguchi G, Phadke M S. Quality engineering through design optimi- zation. New York: Springer US, 1989:77-96. 被引量:1
  • 6Hwang C C, Chang C M, Liu C T. A fuzzy-based Taguehi Method for muhiobjective design of PM motors. IEEE Transactions on Magnetics, 2013 ,49 (5) : 2153-2156. 被引量:1
  • 7Chan K Y, Dillon T S. On-road sensor configuration design for traffic flow prediction using fuzzy neural networks and Tagnchi Method. IEEE Transactions on Instrumentation and Measurement, 2013, 62 (1): 50-59. 被引量:1
  • 8Chan K Y, Khadem S, Dillon T S, et al. Selection of significant on- road sensor data for short-term traffic flow forecasting using the Tagu- chi method. IEEE Transactions on Industrial Informatics, 2012, 8 (2) : 255-266. 被引量:1
  • 9Rodriguez F J, Garcia-Martinez C, Lozano M. Hybrid metaheuris- tics based on evolutionary algorithms and simulated annealing: tax- onomy, comparison, and synergy test. IEEE Transactions on Evolu- tionary Computation, 2012, 16(6) : 787-800. 被引量:1
  • 10Tsai J T, Liu T K, Chou J H. Tuning the structure, parameters of a neural network by using hybrid Taguehi-genetie algorithm. IEEE Transactions on Nural Networks, 2006, (17) : 69-80. 被引量:1

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部