期刊文献+

Al_(0.85)Ga_(0.15)As/GaAs太阳能电池器件工艺优化研究 被引量:3

Study on Optimized Fabrication Technology of Al_(0.85)Ga_(0.15)As/Gs S olar Cells
下载PDF
导出
摘要 报道了优化的p -n型Al0 .85Ga0 .15As/GaAs太阳能电池器件工艺。分别采用真空蒸发Cr/Au和AuGeNi/Au制作正面栅线和背面电极 ,并分别在 4 50℃和 3 50℃下快速合金化形成欧姆接触。采用NH4 OH :H2 O2 :H3PO4 :H2 O体系的选择性腐蚀液去除高掺杂的GaAs接触层。采用真空蒸发技术制备ZnS/MgF2 双层复合减反射层。测试结果表明 ,采用优化工艺制备的器件的光电转换效率得到了明显提高。 The optimized fabrication technology of p-n Al 0.85Ga 0.15 As/Gs solar cells is reported. The front contacting grids of the fabricated so lar cells are formed by evaporating Cr/Au and metallized at 450 ℃ to form Ohmic contact. The back contacts are formed by evaporating AuGeNi/Au and metallized at 350 ℃ . The heavily-doped Gs cap layers are removed by the NH 4OH:H 2O 2:H 3PO 4:H 2O selective etching solution. Double-layered ZnS/MgF 2 is evaporated on the Al 0.85Ga 0.15 As window as the anti-reflection layers. A maximum efficiency of 19.40% for the fabricated 2 cm×2 cm solar cell has been achieved under 1 sun AM1.5 conditio n.
出处 《半导体光电》 CAS CSCD 北大核心 2000年第5期339-341,345,共4页 Semiconductor Optoelectronics
基金 8 63航天领域课题资助项目!(863- 2 - 4- 6- 2A)
关键词 太阳能电池 ALGAAS/GAAS 工艺优化 电子器件 solar cell device fabrication technology AlGs/Gs
  • 相关文献

参考文献3

  • 1[1] Walker D H, Statler R L. Electron radiation damage in gallium arsenide solar cells[J]. Solar Cells, 1987, 22(1):69-77. 被引量:1
  • 2[2] Werthen J G, Virsheep G F, Ford C W,et al. 21% (one sun,air mass zero) 4 cm2 GaAs space solar cells [J]. Appl. Phys. Lett., 1986, 48(1):74-75. 被引量:1
  • 3[3] Tobin S P, Vernon S M, Bajgar C,et al. Assessment of MOCVD and MBE-grown GaAs for high-efficiency solar cell applications[J]. IEEE Trans. Electron Devices,1990, 37(2): 469-477. 被引量:1

同被引文献16

  • 1SHAH A, TORRES P, TSCHARNER R, et al. Photovoltaic technology: The case for thin-film solar cells [J]. Science, 1999, 258 (5428): 692-698. 被引量:1
  • 2TAKAO S. Optics: Electronic eyeballs[J]. Nature, 2008, 454(8): 703-704. 被引量:1
  • 3CHRISTOPH J B, SERDAR N S, Hummelen J C,et al. Plastic solar cells[J]. Adv Funct Mater, 2001, 11(1): 15-25. 被引量:1
  • 4K. Barnham, et al. High Effieciency Ⅲ-Ⅴ Solar Cells[M]. Internal report of Imperial College the United Kingdom, 2001. 被引量:1
  • 5Antonio Luque, Antonio Martí, Lucas Cuadra. Thermodynamic Consistency of Sub-Bandgap Absorbing Solar Cell Proposals[J]. IEEE Trans. Electron Devices, 2001, 48: 2118. 被引量:1
  • 6N. Ekins-Daukes, et al. strain-balanced quantum well solar cells[J]. Physica E: low-dimensional systems and nanostructures, 2002, 14: 132. 被引量:1
  • 7K. Barnham, et al. A novel approach to higher efficiency - the quantum well solar cell[C]. 11th E. C. Photovol Solar Energy Conf., Switzerland, 1992. 被引量:1
  • 8S. Bermner, et al. Detailed balance efficiency limits with quasifermi level variations[J]. IEEE Trans. Electron Devices, 2000, 46: 1932. 被引量:1
  • 9G. Araujo, et al. absolute limiting efficiencies for photovoltaic energy conversion[J]. solar energy materials and solar cells, 1994, 33: 213. 被引量:1
  • 10F. Ragay, et al. experimental analysis of the efficiency of heterostructure GaAs/AlGaAs solar cells[J]. solar energy materials and solar cells, 1996, 40:5. 被引量:1

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部