期刊文献+

数学距离在气测录井资料解释中的应用 被引量:2

Mathematical distance in gas logging data interpretation
下载PDF
导出
摘要 基于数理统计的原理,针对气测录井获得的全烃和烃组分数据集,利用多元逐步线性回归方法、多种空间量度关系计算方法以及组间判别临界值计算方法建立了流体预测模型。应用结果表明,天然气各组分间的相对关系对流体识别更为重要,不同量度方法对引入的组分参数有一定影响,识别精度也有不同;由于空间量度计算方法可选,使预测模型具有了更大的灵活性和适应性。 Based on the principles of mathematical statistics and according to data sets of total hydrocarbon and hydrocarbon components′ that were obtained from gas logging, the fluid prediction model was established by using the method of stepwise multiple linear regression, and calculation methods for a variety of space measurement relationship and determining the critical value between groups. The results showed that the relative relationship among components of natural gas is more important for fluid identification, different measuring methods have certain effects on component parameters, the recognition accuracy is also different; the prediction model has greater flexibility and adaptability because of the optional space measurement method.
出处 《录井工程》 2013年第1期6-8,85,共3页 Mud Logging Engineering
关键词 流体识别 预测模型 空间量度 距离 天然气组分 fluid identification, prediction model, space measurement, distance, natural gas composition
  • 相关文献

参考文献4

二级参考文献27

  • 1周波,李舟波,潘保芝.火山岩岩性识别方法研究[J].吉林大学学报(地球科学版),2005,35(3):394-397. 被引量:62
  • 2张治国,杨毅恒,夏立显.自组织特征映射神经网络在测井岩性识别中的应用[J].地球物理学进展,2005,20(2):332-336. 被引量:44
  • 3社明亮.有序样品分割法的进一步研究与探讨[M].北京:石油工业出版社,1986:211-218. 被引量:1
  • 4Han Jiawei,Kamber M.Data mining concepts and techniques[M].2nd ed.Beijing:China Machine Press,2006. 被引量:1
  • 5Ian H,Eibe F.数据挖掘实用机器学习技术[M].2版.董琳,邱泉,于晓峰,等,译.北京:机械工业出版社,2006. 被引量:1
  • 6Kohonen T.Self-organization and associative memory[M].3rd ed.Heidelberg:Springer-Verlag,1989. 被引量:1
  • 7Kohonen T.The self-organization map[J].Proceedings of the IEEE,1990,78(9):1464-1480. 被引量:1
  • 8Ultsch A.Self-organizing neural networks for visualization and classification[C]//Opitz O,Lausen B,Klar R.Information and classification.Berlin:Springer-Verlag,1993:307-313. 被引量:1
  • 9Vapnik V N.Statistical learning theory[M].New York:Wiley Interscience,1998. 被引量:1
  • 10Cortes C,Vapnik V.Support Vector networks[J].Machine Learning,1995,20(3):273-297. 被引量:1

共引文献26

同被引文献59

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部