期刊文献+

一种改进序贯最小优化算法的方法 被引量:2

Improvement algorithm to sequential minimal optimization
下载PDF
导出
摘要 序贯最小优化算法(SMO)是支持向量机(SVM)训练算法中一种十分有效的改进方法,但针对大规模样本数据时,SMO训练速度仍比较慢。为了提高训练速度,在基本保持训练精度的前提下,提出了一种改进优化策略:即跳过部分与精度无关的向量集、提前结束循环、松弛KKT条件以便收缩工作集。经过几个著名的数据集的试验结果表明,此策略可以大幅缩短SMO的训练时间,并且精度没有明显变化。 A sequential minimal optimization (SMO) algorithm is a very effective method which can improve the training speed of support vector machine (SVM). However, the SMO algorithm is still quite slow in the large-scale datasets. In order to increase the training speed, an optimization strategy which can maintain the training accuracy is proposed. The strategy is to skip the part of the vector irrelevant to accuracy, prematurely finish cycle and relaxe KKT conditions so that it can shrink the working set. The results show that this strategy can significantly reduce the training time and the accuracy is still high in several datasets.
作者 项堃 喻莹
出处 《现代电子技术》 2013年第8期17-19,共3页 Modern Electronics Technique
关键词 支持向量机 序贯最小优化算法 去除无关向量 收缩工作集 SVM SMO unrelated vector of removing shrink of working set
  • 相关文献

参考文献10

二级参考文献67

  • 1李颖新,阮晓钢.基于支持向量机的肿瘤分类特征基因选取[J].计算机研究与发展,2005,42(10):1796-1801. 被引量:51
  • 2[1]Vapnik VN. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995. 被引量:1
  • 3[2]Cherkassky V, Mulier F. Learning from Data-Concepts, Theory and Methods. New York: John Wiley Sons, 1998. 被引量:1
  • 4[3]Joachims T. Text categorization with support vector machines: Learning with many relevant features. In: Proceedings of the European Conference on Machine Learning (ECML). Berlin: Springer-Verlag, 1998. 37~142. 被引量:1
  • 5[4]Weston GJ, Barnhill S. Gene selection for cancer classification using support vector machines. Machine Learning, 2002,46(1-3): 389~422. 被引量:1
  • 6[5]Platt JC. Fast training of support vector machines using sequential minimal optimization. In: Scholkopf B, Burges C, Smola A, eds. Advances in Kernel Methods: Support Vector Machines. Cambridge: MIT Press, 1998. 185~208. 被引量:1
  • 7[6]Smola AJ. Learning with kernels [Ph.D. Thesis]. University of Birlinghoven, 1998. 被引量:1
  • 8[7]Smola AJ, Scholkopf B. A tutorial on support vector regression. Technical Report, TR 1998-030. London: Royal Holloway College, 1998. 被引量:1
  • 9[8]Shevade SK, Keerthi SS, Bhattacharyya C. Improvements to SMO algorithm for SVM regression. IEEE Transactions on Neural Networks, 2000,11(5):1188~1194. 被引量:1
  • 10[9]Flake GW, Lawrence S. Efficient SVM regression training with SMO. Machine Learning Special Issue on SVMs, 2000,46(1~3): 271~290. 被引量:1

共引文献83

同被引文献18

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部