期刊文献+

奇异值分解低通滤波眼底图像归一化

Singular value decomposition low-pass-filter for normalization of retinal image
下载PDF
导出
摘要 针对视网膜眼底图像归一化中的背景估计问题,提出了基于奇异值分解(Singular Value Decomposition,SVD)背景估计新方法。从原理上阐述了SVD估计背景的可行性,并在此基础上设计SVD低通滤波器实现了眼底图像的背景估计,最终实现图像的归一化。新方法在完成图像归一化的基础上,克服了传统眼底图像归一化中背景估计环节计算速度慢的特点,这对视网膜眼底图像后续处理具有重要意义。 A novel Singular Value Decomposition (SVD) method to estimate the fundus images background is presented. The feasibility of background estimation by using SVD is clarified in theory, and a SVD low-pass-filter is designed to realize the estimation of background to normalize the fundus image. Based on the normalization of fundus images, the new method reduces the computation time of background estimation during traditional fundus image normalization, which is meaningful to the post- processing of fundus image.
出处 《计算机工程与应用》 CSCD 2013年第8期174-177,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.60835004) 湖南省教育厅资助科研项目(No.10B109)
关键词 背景估计 奇异值分解(SVD) 非均匀照度和对比度 归一化 background estimation Singular Value Decomposition( SVD) non-uniform illumination and contrast normalization
  • 相关文献

参考文献8

  • 1Joshi G D, Sivaswamy J.Colour retinal image enhancementbased on domain knowledge[C]//6th Indian Conf on Com-puter Vision,Graphics & Image Processing,2008:591 -598. 被引量:1
  • 2Spencer T,Olson J A, McHardy K C, et al.An image-processing strategy for the segmentation and quantificationin fluorescein angiograms of the ocular fundus[J].Computersand Biomedical Research, 1996 : 284-302. 被引量:1
  • 3Radke R J,Andra S,Al-Kofahi 0,et al.Image change detec-tion algorithms:a systematic survey[J].IEHE Transactions onImage Processing,2005,14(3) :294-307. 被引量:1
  • 4Gonzalez R C, Woods R E.Digital image processing[M].[S.l.].Prentice Hall, 1992. 被引量:1
  • 5Kuivalainen M.Retinal image analysis using machine vision[D].Finland : Lappeenranta University of Technology ,2005. 被引量:1
  • 6Par Y K.Retinex method based on adaptive smoothing forillumination invariant face recognition[J].Signal Processing,2008,88(8):1929-1945. 被引量:1
  • 7Foracchia M, Grisan E, Ruggeri A.Luminosity and contrastnormalization in retinal images[J].Medical Image Analysis,2005,3(9):179-190. 被引量:1
  • 8胡谋法,董文娟,王书宏,陈曾平.奇异值分解带通滤波背景抑制和去噪[J].电子学报,2008,36(1):111-116. 被引量:39

二级参考文献18

  • 1胡谋法,李超,韩建涛,王书宏,陈曾平.可见光图像背景起伏的平稳性和相关性分析[J].光电工程,2006,33(3):44-49. 被引量:4
  • 2冯大政,保铮,焦李成.用于奇异值分解的全并行神经网络[J].电子科学学刊,1997,19(1):17-23. 被引量:1
  • 3J.H.威尔金森 著,石钟慈,邓健新 译.代数特征值问题[M].北京:科学出版社,2001. 被引量:5
  • 4A Hennent, J F Giovannelli, G Demoment, et al. Improved characterization of non-stationary flows using a regularized spectral analysis of ultrasound Doppler signals [ J ]. Journal de Physique Ⅲ, 1997,7(10) :2079 - 2085. 被引量:1
  • 5Yingbo Hua, Maziar Nikpour, Petre Stoica. Optimal reducedrank estimation and filtering[J]. IEEE Transactions on Signal Processing, 2001,49(3) :457 - 469. 被引量:1
  • 6A Dogand, A Nehorai. Space-time fading channel estimation and symbol detection in unknown spatially correlated noise[J]. IEEE. Transactions on Signal Processing, 2002, 50 ( 3 ) : 457 - 474. 被引量:1
  • 7H C Andrews, C L Patterson. outer product expansions and their uses in digital image processing [ J ]. IEEE Transactions on Computers, 1976, C-25 (2) : 140 - 148. 被引量:1
  • 8Y S Shim, Z H Cho. SVD pseudoinversion image reconstruction [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981,29(4) :904 - 909. 被引量:1
  • 9K Konstantinides, Kung Yao. Statistical analysis of effective singular values in matrix rank determination[ J]. IEEE Transactions Acoustics, Speech, and Signal Processing, 1988, 36 (5) : 757 - 763. 被引量:1
  • 10S C Pohlig. Spatial-temporal detection of electro-optic moving targets[J]. IEEE Transactions on Aerospace and Electronic System, 1995,31 (2) :608 - 616. 被引量:1

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部