期刊文献+

基于压缩感知的局部场电位信号重构算法研究 被引量:4

Research on Reconstruction Algotithm of Local Field Potential Based on Compressed Sensing
下载PDF
导出
摘要 研究局部场电位信号(Local Field Potential,LFP)的重构问题。依据传统的采样定理对LFP信号进行采样,将会产生庞大的数据量,为LFP信号的传输、存储及处理带来巨大压力。为降低LFP信号的采样速率,减少有效的采样样本,提出压缩感知的局部场电位信号重构的新方法。利用LFP信号在变换域上的稀疏性,通过随机高斯测量矩阵将LFP信号重构模型转化为压缩感知理论中的稀疏向量重构模型。仿真结果表明,采样速率为奈奎斯特采样速率的一半即可准确重构LFP信号,且正交匹配追踪(OMP)重建算法要优于基追踪(BP)重建算法;当选用离散余弦矩阵(DCT)作为稀疏表示矩阵时,信号在正交匹配追踪和基追踪两种重构算法下都有很高的重构精度。 The traditional sampling principle will cause massive data which bring about great pressure during the transmission, storage and processing of LFP signal. In order to lower the requirement of LFP signal for sampling rate and reduce the useful samples, a new method based on compressed sensing to reconstruct LFP signal was proposed. Due to the sparsity of LFP signal in transform domain, LFP signal reconstruction model can be converted into sparse vector reconstruction model through Gaussian random matrix. The simulation result turned out to be that the sampling rate is the half of Nyquist rate and the signal can be reconstructed exactly. Also the OMP has a better performance than BP and both reconstruction algorithms perform good recovery accuracy when choosing DCT matrix as the sparse representation base.
出处 《计算机仿真》 CSCD 北大核心 2013年第4期200-203,共4页 Computer Simulation
基金 国家自然科学基金资助项目(30970755) 天津市应用基础及前言技术研究计划资助项目(09JCYBJC16100)
关键词 压缩感知 局部场电位信号 稀疏表示 信号重构 Compressed sensing Local Field Potential (LFP) Sparse representation Signal reconstruction
  • 相关文献

参考文献14

  • 1D L Donoho. Compressed sensing[ J ]. IEEE Transactions on Infor- mation Theory, 2006,52(4) :1289 - 1306. 被引量:1
  • 2E J Cands. Compressive sampling[ C]. Proceedings of the Inter- national Congress of Mathematicians. Madrid, 2000. 被引量:1
  • 3王开,刘郁林,张先玉.基于压缩感知理论的超宽带信道估计[J].计算机仿真,2011,28(6):132-135. 被引量:5
  • 4Bijan Pesaran, et al. Temporal structure in neuronal activity during working memory in macaque parietal cortex [ J ]. Nat Neurosci, 2002,5(8) :805 -811. 被引量:1
  • 5A Ferdinando, Mussa - Ivaldi, Lee E Miller. Brain - machine in- terface : computational demands and climical needs meet basic neu- roscience[J]. Neuroscience, 2003,26(6): 329-334. 被引量:1
  • 6A M Abdulghani, A ] Casson, E Rodriguez - ViUegas, Quantifying the performance of compressive sensing on scalp EEG signals[ C ]. Applied Sciences in Biomedical and communication Technologies ( ISABEL), Lodon : Imperial College London, 2010 : 1 - 5. 被引量:1
  • 7R G Baraniuk. Compressive sensing [ J ]. IEEE Signal Processing Magazine, 2007,24 (4) : 118 - 121. 被引量:1
  • 8E J Cands, T Tao. Near optimal signal recovery from random pro- jections: universal encoding strategies [ J]. IEEE Transaction on Information Theory. 2006,52 ( 12 ) :5406 - 5425. 被引量:1
  • 9M A T Figueiredo, R D Nowak, S J Wright. Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems [ J ]. IEEE Journal of Selected Topics in Signal Processing, 2007,1 (4) :586 - 597. 被引量:1
  • 10S S Chen, D L Donoho, M A Saundera. Atomic Decomposition by Basis Pursuit [ J ]. Society for Industrial and Applied Mathe- matics, 2001,43( 1 ) :129 - 159. 被引量:1

二级参考文献16

  • 1L YANG, G B GIANNAKIS. Ultra - wideband communications: An idea whose time has come [ J ]. IEEE Signal Process. Mag. , Nov. 2004,21 (6) :26 - 54. 被引量:1
  • 2B SKIM, et al. A comparative analysis of optimum and suboptimum Rake receivers in impulsive UWB environment [J]. IEEE Transactions on Vehicular Technology, 2006,55 (6) : 1797 - 1804. 被引量:1
  • 3R LAZQUEZ, F S LEE, D WENTZLOFF, P NEWASKAR, J D POWELL, A P CHANDRAKASAN. Digital architecture for ultra -wideband radio receiver[ C]. In Proc. VTC Fall 2003, Orlando, FL, Oct. 2003. 1303-1307. 被引量:1
  • 4A F MOLISCH, K BALAKRISHNAN, D CASSIOLI, C Chong, S EMAMI, A FORT, J KAREDAL, J KUNISCH, H SCHANTZ, U SCHUSTER K SIWIAK. IEEE 802. 15.4a channel model - Final report[ R ]. IEEE P802. 15 - 04/662r2 - TC4a, July 2005. 被引量:1
  • 5V LOTTICI, A ANDREA, U MENGALI. Channel Estimation for Ultra - Wideband Communications[ J ]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2002,20:9. 被引量:1
  • 6T RAPPAPORT. Wireless Communications principles and practice [M1. Prentice Hall, 1996. 被引量:1
  • 7D BOSS, K D KAMMEYER, T PETERMANN. Is blind estimation feasible in mobile communication systems? A study based on GSM [J]. IEEEJSAC, Oct. 1998,16(8) :1479-1492. 被引量:1
  • 8D DONOHO. Compressed sensing[ J]. IEEE Trans. Information Theory, 2006,52(4) : 1289 - 1306. 被引量:1
  • 9E CANDES. Compressive sampling[C]. Proceedings of the International Congress of Mathematicians. Madrid, Spain: [ s. n. ], 2006. 1433 - 1452. 被引量:1
  • 10E CANDES, J ROMBERG, T TAO. Robust uncertainty principles :Exaet signal reconstruction from highly incomplete frequency information[J]. IEEE Trans. Information Theory, 2006,52(4) : 489 - 509. 被引量:1

共引文献4

同被引文献21

  • 1张燕,魏功祥,国承山.离轴菲涅尔全息图的数字再现[J].光电子.激光,2006,17(11):1384-1387. 被引量:8
  • 2M D Plumhley. Recovery of sparse representations by polytope faces pursuit[ C]. In Proceedings of the 6th International Confer- ence on Independent Component Analysis and Blind Source Separation (ICA 2006), Charleston, SC, USA, 5 - 8, LNCS 3889, March 2006:206-213. 被引量:1
  • 3M D Plumbley. On polar polytopes and the recovery of sparse rep- resentations[ J]. IEEE Transactions on Information Theory, 2007, 53(9) :3188 - 3195. 被引量:1
  • 4S S Chen, D L Donoho and M A Sannders. Atomic decomposition by basis pursuit[ J]. SIAM Review, 2001,43(1) : 129-159. 被引量:1
  • 5H L Huang, Anamitra Makur. Backtracking-Based Matching Pur- suit Method for sparse signal reconstruction [ J ]. IEEE Signal Pro- cessing Letters, 2011,18 (7) : 391-394. 被引量:1
  • 6Y J Chin, T S Ong,A B J Teoh, K O M Goh. Integrated biomet- rics template protection technique based on fingerprint and palm- print feature-level fusion [ J ]. Information Fusion, 2014,18 : 161 - 174. 被引量:1
  • 7L Leng, M Li, A B J Teoh. Conjugate 2DPalmHash Code for se- cure palm-print-vein verification[ C]. 6rd International Congress on Image and Signal Processing, 2013: 1694-1699. 被引量:1
  • 8S Shekhar, V M Patel, N M Nasrabadi,R Chellappa. Joint sparse representation for robust multimodal biometrics recognition [ J ].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014,36( 1 ) :113-126. 被引量:1
  • 9Y B Zhou, A Kumar. Human identification using palm-vein images [ J]. IEEE Transactions on Information Forensics and Security, 2011,6(4) :1259-1274. 被引量:1
  • 10G K O Micheal, T Connie, A B J Teoh. A contacfless biometric system using multiple hand features[ J]. Journal of Visual Commu- nication and Image Representation, 2012,23 ( 7 ) : 1068-1084. 被引量:1

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部