期刊文献+

Synchronization of uncertain fractional-order chaotic systems with disturbance based on a fractional terminal sliding mode controller 被引量:3

Synchronization of uncertain fractional-order chaotic systems with disturbance based on a fractional terminal sliding mode controller
下载PDF
导出
摘要 This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional-order switching manifold is proposed, and in order to ensure the occurrence of sliding motion in finite time, a corresponding sliding mode control law is designed. The proposed control scheme is applied to synchronize the fractional-order Lorenz chaotic system and fractional-order Chen chaotic system with uncertainty and external disturbance parameters. The simulation results show the applicability and efficiency of the proposed scheme. This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional-order switching manifold is proposed, and in order to ensure the occurrence of sliding motion in finite time, a corresponding sliding mode control law is designed. The proposed control scheme is applied to synchronize the fractional-order Lorenz chaotic system and fractional-order Chen chaotic system with uncertainty and external disturbance parameters. The simulation results show the applicability and efficiency of the proposed scheme.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第4期178-184,共7页 中国物理B(英文版)
基金 Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 11MG49)
关键词 fractional-order chaotic system SYNCHRONIZATION terminal sliding mode control UNCERTAINTY DISTURBANCE fractional-order chaotic system synchronization terminal sliding mode control uncertainty disturbance
  • 相关文献

参考文献57

  • 1Watts D J and Strogatz S H 1998 Nature 393 440. 被引量:1
  • 2Barabási A L and Albert R 1999 Science 286 509. 被引量:1
  • 3Lü J H and Chen G R 2005 IEEE Trans. Autom. Control 50 841. 被引量:1
  • 4Liu H, Lu J A, Lü J H and Hill D J 2009 Automatica 45 1799. 被引量:1
  • 5Duan Z S and Chen G R 2012 Chin. Phys. B 21 080506. 被引量:1
  • 6Lü J H, Yu X H, Chen G R and Cheng D Z 2004 IEEE Trans. Circ. Sys. I: Regular Papers 51 787. 被引量:1
  • 7He D R, Liu Z H and Wang B H 2009 Complex Systems and Complex Networks (Beijing: Higher Education Press) pp. 1-4 (in Chinese). 被引量:1
  • 8Zhou J, Lu J A and Lü J H 2006 IEEE Trans. Autom. Control 51 652. 被引量:1
  • 9Zhao L, Liao X F, Xiang T and Xiao D 2009 Chin. Phys. Lett. 26 060502. 被引量:1
  • 10Wang Z, Huang X, Li N and Song X N 2012 Chin. Phys. B 21 050506. 被引量:1

同被引文献8

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部