摘要
正交变换是一类非常重要的变换,其具有使变换前后图像能量保持不变的特性。图像的正交变换是图像处理技术的重要工具,被广泛地运用于图像特征提取、图像增强、图像复原、图像压缩和图像识别等领域。首先,论述了正交变换的定义及编码原理;其次,对正交变换中的傅立叶变换和离散余弦变换的基本概念、性质、算法以及在图像处理中的应用等进行了详细的叙述;最后,利用Matlab和C++编程,实现了快速离散傅立叶变换和离散余弦变换,并对两种变换结果的优劣作了全面的比较。
Orthogonal Transformation is a very important transformation, its energy remains the same before and after transform. Orthogonal Transformation is an important tool in image processing, which is widely applied in image feature extraction, image enhancement, image restoration, image compression, image recognition and other fields. Firstly, the definition of Orthogonal Transformation and Coding Theory are discussed in this paper; Secondly, the basic concepts, properties, algorithms of Fourier Transform and Discrete Cosine Transform are stated, their applications in image processing are introduced; Finally, the Matlab and C++ are used to program Fast Discrete Fourier Transform and Discrete Cosine Transform, comparing the results of two transformations.
出处
《电子产品可靠性与环境试验》
2013年第2期57-62,共6页
Electronic Product Reliability and Environmental Testing
关键词
正交变换
傅立叶变换
离散余弦变换
频域
orthogonal transformation
Fourier transform
discrete cosine transform
frequency domain