摘要
文章通过对图Fm(t)的k-强优美性研究,利用k-强优美图的定义,给出对任意自然数t≥1,m≥2,当k=[m/2]时,Fm(t)是k-强优美图,非连通图Fm(t)∪Gk-1是优美图。当m≥2p+2时,非连通图Fm(t)∪Kn,p是优美图,其中,Fm是有m+1个顶点的扇形图,Fm(t)是合并t个扇Fm,F2 m,…,F2t-1m的中心顶点构成的连通图,Gk-1是有k-1条边的优美图。
The k-strong gracefulness of graphs Ff is studied. By using the definition of k-strong graceful graph, it is showed that for any natural number t, which is not less than one, when k = [m/2] , the graphs F(f are k-strong graceful, and the disconnected graphs Fm(t)UGk-1 are graceful. If m is greater or equal to 2p+2, the disconnected graphs Fm(t)U Kn,p are graceful, where Fm is a fan with m+l vertices, Fm(t) is a connected graph by identifying the central vertices of Fm, F2m, …, F2t-1m, and Gk-1 is a graceful graph with k--1 edges.
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
北大核心
2013年第4期486-490,共5页
Journal of Hefei University of Technology:Natural Science
基金
国家自然科学基金资助项目(10201022
11101020)
北京市自然科学基金资助项目(1102015)
中央高校基本科研业务费专项资金资助项目(2011B019)
关键词
优美图
k-强优美图
非连通图
graceful graph
k-strong graceful graph
disconnected graph