摘要
摘要:研究一类具有leakage时滞的离散型神经网络的状态估计问题.通过构造新的Lyapunov泛函得到保证估计误差全局渐近稳定的充分条件,并通过求解一个线性矩阵不等式(LMI)得到状态估计器的增益矩阵.采用一种新的时滞分割方法将变时滞区间分割为多个子区间,使该结果在获得更小的保守性同时也降低了计算的复杂度.
In this paper, the problem of state estimation for a class of discrete-time neural networks with leakage delay is investigated. A novel Lyapunov-Krasvskii functional is employed to derive a sufficient condition guaranteeing the estimation error to be globally asymptotically stable and the design of the gain matrix of the state estimator can be achieved by solving a linear matrix inequality (LMI). The result is less conservative and, meanwhile, the computational complexity is reduced because a novel delay decomposition approach is developed which divides the variation interval of time-varying delay into several subintervals.
出处
《军械工程学院学报》
2013年第1期74-78,共5页
Journal of Ordnance Engineering College
基金
国家自然科学基金项目(11701254)
关键词
离散型神经网络
时滞分割
leakage时滞
状态估计
线性矩阵不等式
discrete-time stochastic neural networks ldelay decomposition
leakage delay
state esti-mation
linear matrix inequality