期刊文献+

随机幅相误差对线阵方向图最高副瓣电平的影响研究 被引量:2

Impact of Random Amplitude-Phase Errors on Maximum Side-lobe Level of Linear Array Pattern
下载PDF
导出
摘要 副瓣电平是天线的重要技术指标之一,较低的副瓣电平可以减弱杂波影响、提高雷达的抗干扰能力。但在实际设计天线的过程中,不可避免的会引入随机误差,使得阵列的口径分布发生变化,直接影响天线阵的性能。随机误差的引入最终都可以表现为阵列各个单元的幅度误差和相位误差,故需要分析随机幅相误差对阵列天线副瓣电平的影响。本文以此出发,应用统计学理论,得到计入随机幅相误差后阵列副瓣区副瓣电平的统计特性,并由此分析在整个副瓣区域内最高副瓣电平的统计特性。结合计算机仿真,证明分析计算结果的正确性。 Side-lobe level is one of the important technical specifications in antenna design. Lower side-lobe is not only helpful for reducing impact of clutter but can also improve anti-jamming performance of radar. However, ran- dom error is inevitable in antenna design, which would change the aperture distribution of antenna array and direct- ly affect performance of the array. The random errors finally show as amplitude-phase errors of elements in the ar- ray; therefore analyzing impact of random amplitude-phase errors on side-lobe level of array is very necessary. Based on statistic theory, statistical characteristic of linear array pattern' s side-lobe with random amplitude-phase errors is obtained. Through analyzing statistical characteristic of the maximum side-lobe level in the whole side-lobe zone and by combining with computer simulation, correctness of the analysis result is verified.
出处 《火控雷达技术》 2013年第1期87-93,共7页 Fire Control Radar Technology
关键词 副瓣电平 低副瓣 随机幅相误差 最高副瓣电平 side-lobe level low side-lobe random amplitude-phase error maximum side-lobe level
  • 相关文献

参考文献10

二级参考文献14

共引文献15

同被引文献18

  • 1杨辉,魏永辉,成票宁.测控雷达主、副瓣跟踪识别方法分析与应用[J].现代雷达,2004,26(9):23-25. 被引量:5
  • 2崔金辉,杨莘元.超低副瓣阵列天线不同扫描角度幅相误差影响的研究[J].哈尔滨工程大学学报,2004,25(6):786-788. 被引量:2
  • 3Vain A, Yu X, Kaasalainen S, et ai. Correcting airborne laserscanning intensity data for automatic gain control effect [J].IEEE Geoscience and Remote Sensing Letters, 2010, 7(3):511-514. 被引量:1
  • 4Li Hua, Zhou Jian-jiang, and Zhu Gen-cai. A study onreal-time control for array hardware-in-the-loop RFSS basedon VMIC network[C]. Proceedings of the IEEE 2012International Conference on Microwave and Millimeter WaveTechnology, Shenzhen, China, 2012,5: 1-4. 被引量:1
  • 5Van Der Walt P W. The power density in the radiating nearfield region of directive antennas[C]. Proceedings of theIEEE-APS Topical Conference on Antennas and Propagationin Wireless Communications, Cape Town, South Africa, 2012:1165-1168. 被引量:1
  • 6Tao Xiang and Gong Shao-gang. Spectral clustering witheigenvector selection[J]. Pattern Recognition, 2008, 41(3):1012-1029. 被引量:1
  • 7Dietterich T G, Domingos P, Getoor L, et ai. Structuredmachine learning: the next ten years [J]. Machine Learning,2008, 73(1): 3-23. 被引量:1
  • 8Sapankevych N I and Sankar R. Time series prediction usingsupport vector machines: a survey [J]. IEEE ComputationalIntelligence Magazine, 2009, 4(2): 24-38. 被引量:1
  • 9Delaye A and Liu Cheng-li. Text/Non-text classification inonline handwritten documents with conditional randomfields [C]. Proceedings of the Chinese Conference on PatternRecognition, Beijing, China, 2012: 514-521. 被引量:1
  • 10Franc V and Sonnenburg S. Optimized cutting planealgorithm for support vector machines[C]. Proceedings of the25th International Conference on Machine Learning, Helsinki,Finland, 2008: 320-327. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部