期刊文献+

基于禁忌粒子群算法的混流装配线排序研究 被引量:4

Tabu particle swarm optimization for sequencing problems in mixed-model assembly lines
下载PDF
导出
摘要 为了更好地解决开放式作业域的混流装配线排序问题,建立了以最小化超载时间与平顺化零部件消耗为优化目标的混流装配线排序问题数学模型,并提出了一种禁忌粒子群算法求解该排序问题。针对标准粒子群算法在算法后期搜索精度不足以及容易陷入局部最优不能跳出的缺陷,引入了禁忌搜索算法建立了对最优微粒的重搜索机制来提高算法跳出局部最优的能力,同时给出了禁忌算法中候选解、禁忌表长度、禁忌对象、藐视准则的设置方法,并采用了随机权重的惯性权重更新方式来平衡算法的全局和局部搜索能力,最后建立了禁忌粒子群的算法流程。通过比较禁忌粒子群算法与遗传算法的实例计算结果,验证了禁忌粒子群算法在求解开放式作业域的混流装配线排序问题中的有效性和优越性。 In order to solve the sequencing problems in open-station mixed-model assembly lines,a mathematical model was established that considered two objectives: to minimize the utility time and keep average consumption rate of parts, and the tabu particle swarm optimization was proposed to solve the problem. Aiming at standard particle swarm optimization with an insufficient accuracy in late search and easy to fall into the local optimum, the tabu search algorithm was brought to establish the optimal particle research mechanism as well as improve the capacity to jump out from a local optimum point. A random weight updates was brought in to balance the global and local search ability. An example was given to test the algorithm. The results indicate that the algorithm can solve sequencing problems in mixed-model assembly lines successfully with an effective outcome.
出处 《机电工程》 CAS 2013年第4期430-434,共5页 Journal of Mechanical & Electrical Engineering
基金 国家自然科学基金资助项目(70971118) 浙江省自然科学基金资助项目(LY12E05021) 浙江省教育厅科研资助项目(Y201121984)
关键词 粒子群算法 混流装配线排序 禁忌搜索算法 排序 particle swarm optimization(PSO) mixed-model assembly line tabu search sequencing
  • 相关文献

参考文献14

二级参考文献94

共引文献103

同被引文献31

  • 1张则强,程文明,钟斌,王金诺.求解装配线平衡问题的一种改进蚁群算法[J].计算机集成制造系统,2007,13(8):1632-1638. 被引量:37
  • 2赵秋红,肖依永.基于单点搜索的元启发式算法[M].北京:科学出版社,2013. 被引量:3
  • 3Yu J, Yin Y. Assembly line balancing based on an adaptive genetic algorithm[ J]. The International Journal of Advanced Manufacturing Technology, 2010, 48 ( 1 - 4) : 347 - 354. 被引量:1
  • 4Dongyun W, Ping Z, Luowei L, et al. Assembly line balan- cing problem using Particle Swarm Optimization algorithm [ C ]//Intelligent Computing and Integrated Systems (ICISS), 2010 International Conference on. IEEE, 2010:629 -632. 被引量:1
  • 5NEARCHOU A C. Maximizing production rate and workload smoothing in assembly lines using particle swarm optimiza- tion [ J ]. International Journal of Production Economics, 2011, 129(2) : 242 -250. 被引量:1
  • 6Liu C, Wen H. Hybrid particle swarm algorithm for assem- bly line balancing problem in complicated products [ C ]// Software Engineering and Service Science (ICSESS) , 2013 4th IEEE International Conference on. IEEE, 2013: 902- 905. 被引量:1
  • 7Kalayci C B, Gupta S M. A particle swarm optimization al- gorithm with neighborhood-based mutation for sequence-de- pendent disassembly line balancing problem [ J ]. The Inter- national Journal of Advanced Manufacturing Technology, 2013, 69(1 -4) : 197 -209. 被引量:1
  • 8WANG Binggang.Sequencing Mixed-model Production Systems by Modified Multi-objective Genetic Algorithms[J].Chinese Journal of Mechanical Engineering,2010,23(5):537-546. 被引量:5
  • 9葛宇,王学平,梁静.自适应混沌变异蛙跳算法[J].计算机应用研究,2011,28(3):945-947. 被引量:33
  • 10刘琼,王文玺,张超勇,朱海平.基于改进分散搜索的混流装配线排序问题[J].计算机集成制造系统,2011,17(4):776-782. 被引量:7

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部