期刊文献+

碳钢表面铜-碳化硅纳米复合镀层的制备及其性能研究 被引量:2

Preparation of Cu-SiC nanocomposite deposit on surface of carbon steel and its property research
原文传递
导出
摘要 在Q235碳钢表面先预浸镀铜,然后采用超声-电沉积方法获得Cu-SiC纳米复合镀层。研究了纳米SiC含量对纳米复合镀层表面形貌的影响,讨论了阴极电流密度、超声功率、温度和电沉积时间对复合镀层显微硬度的影响,获得了较佳的工艺条件:镀液中SiC纳米颗粒含量9g/L,阴极电流密度6A/dm2,超声波功率200W,镀液温度30°C,电沉积时间40min。在此条件下制备Cu-SiC纳米复合镀层,测试了镀层的结合力,并与普通铜镀层进行比较,研究了复合镀层的表面形貌、显微硬度以及在3.5%NaCl溶液中的电化学阻抗谱(EIS)。结果表明,所制备的复合镀层结合力良好,其表面颗粒尺寸在0.5~1.0μm之间(小于普通铜镀层的1~4μm),显微硬度和反应电阻分别为294.6HV和2446.5.cm2(大于普通铜镀层的162.0HV和1538.7.cm2)。Cu-SiC纳米复合镀层具有较好的机械性能和耐腐蚀性能。 A Cu-SiC nanocomposite coating was prepared by ultrasonic-assisted electrodeposition on the surface of Q235 carbon steel previously treated by dip plating of copper The effect of nano-SiC content on surface morphology of the composite deposit was studied. The influence of the cathodic current density, ultrasonic power, bath temperature, and electrodeposition time on microhardness of Cu-SiC composite coating were discussed. The good process conditions were obtained as follows: the content of SiC nano particles in bath 9 g/L, cathodic current density 6 A/dm2, ultrasonic power 200 W, bath temperature 30 ℃, and electrodeposition time 40 min. The adhesion strength of the Cu-SiC nanocomposite coating obtained under the above conditions was tested. The surface morphology, microhardness, and electrochemical impedance behavior in3.5% NaCl solution of Cu-SiC composite coating were compared with a common Cu coating. The results showed that the prepared composite coating features good adhesion strength, surface particle size range of 0.5-1.0 lam (smaller than that of the common copper coating 1-4 μm), as well as microhardness 294.6 HV and reaction resistance 2 446.5 Ω.cm2 (both larger than 162.0 HV and 1 538.7Ω.cm2 of the common copper coating). The Cu-SiC nanocomposite coating has better mechanical properties and corrosion resistance.
出处 《电镀与涂饰》 CAS CSCD 北大核心 2013年第4期9-13,共5页 Electroplating & Finishing
关键词 碳化硅 纳米复合镀层 电沉积 超声波 copper silicon carbide nanocomposite coating electrodeposition ultrasonic
  • 相关文献

参考文献10

  • 1MASRI P. Silicon carbide and silicon carbide-based structures: The physics of epitaxy [J]. Surface Science Reports, 2002, 48 (1/4): 1-5 1. 被引量:1
  • 2TONG L J, MEHREGANY M, MATUS L G. Mechanical properties of 3C silicon carbide [J]. Applied Physics Letters, 1992, 60 (24): 2992-2994. 被引量:1
  • 3COSTA A K, CAMARGO S S JR, ACHETE C A, et al. Characterization of ultra-hard silicon carbide coatings deposited by RF magnetron sputtering [J]. Thin Solid Films, 2000, 377/378: 243-248. 被引量:1
  • 4LEI Y M, YU Y H, REN C X, et al. Compositional and structural studies of DC magnetron sputtered SiC films on Si (111) [J]. Thin Solid Films, 2000, 365 (1): 53-57. 被引量:1
  • 5SHA Z D, WU X M, ZHUGE L J. Structure and photoluminescence properties of SiC films synthesized by the RF-magnetron sputtering technique [J]. Vacuum, 2005, 79 (3/4): 250-254. 被引量:1
  • 6KONG H S, PALMOUR J W, GLASS J T, et al. Temperature dependence of the current-voltage characteristics of metal-semiconductor field-effects transistors in n-type β-SIC grown via chemical vapor deposition [J]. Applied Physics Letters, 1987, 51 (6): 442-444. 被引量:1
  • 7PALMOUR J W, KONG H S, DAVIS R F. High-temperature depletion- mode metal-oxide-semiconductor field-effect transistors in beta-SiC thin films [J]. Applied Physics Letters, 1987, 51 (24): 2028-2030. 被引量:1
  • 8刘伯威,潘进,樊毅,张金生.SiC颗粒强韧化MoSi_2复合材料[J].复合材料学报,2002,19(1):59-63. 被引量:24
  • 9GUGLIELMI N. Kinetics of the deposition of inert particles from electrolytic baths [J]. Journal of the Electrochemical Society, 1972, 119 (8): 1009-1012. 被引量:1
  • 10张景双等编著..电镀溶液与镀层性能测试[M].北京:化学工业出版社,2003:207.

二级参考文献12

  • 1[1]Petrovic J J, Vasudevan A K. In: Graves J A, ed. Intermetallic Matrix CompositesⅡ [M]. Pittsburgh, Pennsylvania: MRS Park Ⅲ,1992. 229-239. 被引量:1
  • 2[2]Chang H, Kung H, Gibala R. In: Graves J A, ed. Intermetallic Matrix CompositesⅡ [M]. Pittsburgh, Pennsylvania: MRS Park Ⅲ,1992. 253-258. 被引量:1
  • 3[3]Ghosh A K, Basu A, Kung H. In: Graves J A, ed. Intermetallic Matrix CompositesⅡ [M]. Pittsburgh, Pennsylvania: MRS Park Ⅲ,1992. 259-266. 被引量:1
  • 4[4]Wiedemeier H,Singh M. Thermochemical modelling of interfacial reactions in molybdenurn disilicide matrix composites [J]. J Mater Sci, 1992, 27: 2974-2978. 被引量:1
  • 5[5]Subrahmanyam J, Mohan Rao R. Combustion synthesis of MoSi2-WSi2 alloys[J]. Mater Sci Eng, 1994, A183 : 205-210. 被引量:1
  • 6[6]Alman D E, shaw K G. Stoloff N S and Rajan K. Fabrication, structure and properties of MoSi2-base composites [J] Mater Sci Eng, 1992, A155: 85-93. 被引量:1
  • 7[7]Cook J,Khan A, Lee E, Mahapatra R. Oxidation of MoSi2-based composites [J]. Mater Sci Eng, 1992, A155: 183-198. 被引量:1
  • 8[8]Schwarz R B, Srinivasan S R, Petrovic J J, Maggiore C J. Synthesis of molybdenum disilicide by mechanical alloying [J]. Mater Sci Eng, 1992, A155: 75-83. 被引量:1
  • 9[9]Castro R G, Smith R W, Rollett A D, Stanek P W. Ductile phase toughening of molybdenum disilicide by low pressure plasma spraying [J]. Mater Sci Eng, 1992, A155: 101-107. 被引量:1
  • 10[10]Vasudevan A K, Petrovic J J. A comparative overview of molybdenum disilicide composites [J]. Mater Sci Eng, 1992, A155:1-17. 被引量:1

共引文献23

同被引文献17

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部