期刊文献+

基于全矢谱和动态支持向量数据描述的滚动轴承故障诊断研究 被引量:2

RESEARCH OF ROLLING BEARING FAULT DIAGNOSIS BASED ON VECTOR SPECTRUM AND DSVDD
下载PDF
导出
摘要 传统的单通道信号分析容易造成信息缺失和诊断结论不一致等问题,这些问题可由全矢谱分析技术来解决。动态支持向量数据描述算法是对传统支持向量数据描述的改进算法,它的分类边界随着被测样本数的不断增加而不断更新,具有自学习能力。将全矢谱分析技术与动态支持向量数据描述算法相结合而提出全矢谱动态支持向量数据描述(vector spectrum dynamic support vector data description,VSDSVDD)的故障诊断新方法。运用全矢谱技术对数据进行处理,并提取特征矢量,作为VSDSVDD的输入参数,建立起分类模型即可以对机器运行状态进行分类。实验表明,该方法具有很好的分类准确性。 Traditional signal analysis methods based on single channel can result some mistakes, for example some of the information is lost or the diagnosis results are conflicting with the same signal, and these problems can be solved by means of full vector spectrum signal analysis method. Dynamic support vector data description algorithm is the amelioration algorithm of the traditional support vector data description and its classification boundary is updated constantly with the increasing number of tested samples, and it has the ability of self-learning. A new fault diagnosis method named vector spectrum dynamic support vector data description(VSDSVDD) is put forward, in this method the vector spectrum analysis and the dynamic support vector data description are combined. By using the vector spectrum method to process the signals and extract the characteristic vector to be used as the input parameters of VSDSVDD, the classification model is set up and therefore the running state of the machines can also be classified. Experiments show that this method has more class veracity.
出处 《机械强度》 CAS CSCD 北大核心 2013年第2期152-155,共4页 Journal of Mechanical Strength
基金 国家自然科学基金(50675209) 河南省自然科学基金(0611022400) 河南省高等学校精密制造技术与工程重点学科开放实验室开放基金资助项目
关键词 全矢谱 特征提取 故障诊断 动态支持向量数据描述 Full vector spectrum Feature extraction Fault diagnosis Dynamic support vector data description ( DSVDD )
  • 相关文献

参考文献6

  • 1李凌均..统计学习理论在机械设备智能诊断中的应用研究[D].西安交通大学,2003:
  • 2韩捷等著..全矢谱技术及工程应用[M].北京:机械工业出版社,2008:225.
  • 3Tax D, Ypma A, Duin R. Support vector data description applied to machine vibration analysis [ C 1//Boasson M, Kandorp J, Tonino J, et al. ASCI'99 : Proc 5th Annual Conference of the Advanced School for Computing and Imaging. Heijen: The Netherlands, 1999: 398- 405. 被引量:1
  • 4彭敏晶,肖健华.动态SVDD算法及其应用[J].计算机科学,2009,36(3):156-157. 被引量:4
  • 5David M J Tax. One-class classification [ D ]. Delft, Holland: Delft University of Technology, 2011: 21-56. 被引量:1
  • 6李凌均,韩捷,王昆,郝伟.基于单分类的机械故障诊断研究及其应用[J].机械强度,2008,30(5):697-701. 被引量:12

二级参考文献12

  • 1李凌均,韩捷,郝伟,董辛,何正嘉.支持向量数据描述用于机械设备状态评估研究[J].机械科学与技术,2005,24(12):1426-1429. 被引量:22
  • 2陈伏兵,杨静宇.分块PCA及其在人脸识别中的应用[J].计算机工程与设计,2007,28(8):1889-1892. 被引量:26
  • 3王文豪,严云洋.基于图像分块的LDA人脸识别[J].计算机工程与设计,2007,28(12):2889-2891. 被引量:6
  • 4Tax D J, Ypma A, Duin R W. Support vector data description applied to machine vibration[A]//Proceedings of 5th Annual Conference of the Advanced School for Computing and Imaging [C]. Heijen, NL, USA, 1999: 398-405 被引量:1
  • 5Vilaplana V, Marques F. Support vector data description based on PCA features for face detection[EB/OL], http://www.ee. bilkent. edu. tr/-signal/defevent/papers/cr1446. pdf 被引量:1
  • 6罗隽,潘志松,胡谷雨.基于SVDD的网络安全审计模型研究[J].智能系统学报,2007,2(4):69-73. 被引量:3
  • 7Tax D M J, Duin R P W . Support vector domain description[J]. Pattern Recognition Letters, 1999, 20(11-13) : 1191-1199. 被引量:1
  • 8Xin Dong, Wu Zhaohui, Zhang Wanfeng. Support Vector Domain Description for Speaker Recognition [ C ]//Proceedings of the Neural Networks for Signal Processing XI, 2001. Falmouth: Signal Processing Society, 2001 : 481-488. 被引量:1
  • 9Tax D M J, Duin R P W. Outliers and data descriptions[ C]//Proceedings of the ASCI2001. Delft: The Advanced School for Computing and Imaging (ASCI), 2001:234-241 被引量:1
  • 10Vapnik V N. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995: 25-125. 被引量:1

共引文献13

同被引文献24

  • 1卢文秀,褚福磊.转子系统碰摩故障的实验研究[J].清华大学学报(自然科学版),2005,45(5):614-617. 被引量:22
  • 2杨宇,于德介,程军圣.基于EMD的奇异值分解技术在滚动轴承故障诊断中的应用[J].振动与冲击,2005,24(2):12-15. 被引量:47
  • 3程军圣,于德介,杨宇.EMD方法在转子局部碰摩故障诊断中的应用[J].振动.测试与诊断,2006,26(1):24-27. 被引量:46
  • 4Liu Xiaoqin, Wang Dazhi. Wavelet neural networks based fault diagnosis of analog circuit [ C ]//Proc of IEEE Chinese control and decision conference. [ s. 1. ] :IEEE,2012. 被引量:1
  • 5Guo Y, Ma J, Xiao F. SVM with optimized parameters and its application to electronic system fault diagnosis[ C]//Proceed- ings of IEEE ICPHM. Denver, CO, USA : IEEE ,2012. 被引量:1
  • 6Wang Z, Li H, Ma L. HHT based long term feature extracting method for speech emotion classiflcation [ C ]//Proceedings of IEEE ICALIP. Shanghai : IEEE ,2012:276-281. 被引量:1
  • 7Sen Y, Chen M. Research on method of analog circuit state recognition based on KPCA - SVDD [ C ]//Proc of the 10th IEEE international conference on computer science and elec- tronics engineering. Hong Kong : IEEE ,2012:498-500. 被引量:1
  • 8Shen F,Song Z,Zhou L. Improved PCA-SVDD based monito- ring method for nonlinear process [ C ]//Proc of the 25th Chi- nese control and decision conference. [ s. 1. ] : [ s. n. ] ,2013 : 4330-4336. 被引量:1
  • 9Niazmardi S, Homayouni S, Safari A. An improved FCM algo- rithm based on the SVDD for unsupervised hyperspectral data classification[ J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013,6 ( 2 ) : 831 - g39. 被引量:1
  • 10Huang N. E, Shen Z, Long S. R Etc. The empirical mode decomposition and the Hilbert spectrum for Nonlinear and non- stationary time series analysis[ J]. Proceedings of the Royal Society of London Series, 1998,45 (4) :903-995. 被引量:1

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部