期刊文献+

推荐系统中基于无监督策略托攻击检测

Unsupervised Strategies for Shilling Attack Detection in Recommender System
原文传递
导出
摘要 协同过滤推荐系统中,推荐结果对用户偏好信息的敏感性使得推荐系统易受到人为攻击,即托攻击。恶意用户可以任意使用多重身份,或者是多个人来参与,都能注入恶意信息到推荐系统中。这类攻击严重影响了推荐系统的鲁棒性和准确性。这里深入分析了托攻击,结合主成分分析和变量选择方法,提出一个高精确度鲁棒的协同过滤系统架构,以保护推荐系统抵御用户概貌注入攻击。最后,通过实验验证表明该新型的高精确度的协同过滤系统可以取得更好的检测精度。 Collaborative filtering systems are vulnerable to manipulation by malicious social elements such as shilling attack. Malicious user votes and profiles could be injected into a collaborative recommender system, with either multiple identities or by involving more people, and this would significantly affect the robustness and accuracy of the system or algorithm, the shilling attack is analyzed in an in-depth way, and a novel robust collaborative filtering system, is proposed in combination with principal component analysis and variable selection, thus to protect recommender system from shilling attack. Finally the experiment indicates that this filtering system could achieve a fairly high detection accuracy.
作者 高鹏 骆源
出处 《通信技术》 2013年第4期5-8,12,共5页 Communications Technology
基金 国家自然科学基金资助项目(批准号:61271222)
关键词 推荐系统 托攻击检测 无监督策略 recommender systems shilling attack detection unsupervised strategy
  • 相关文献

参考文献13

  • 1HE X, LUO Y. Mutual Information based SimilarityMeasure for Collaborative Filtering. Progress inInformatics and Computing (PIC). [C]// 2010 IEEEInternational Conference. Shanghai: IEEE, 2010:1117-1121. 被引量:1
  • 2ZHANG Q, LUO Y,WENG C,et al. A Trust-BasedDetecting Mechanism against Profile InjectionAttacks in Recommender Systems [C]. Secure SoftwareIntegration and Reliability Improvement, 2009:59-64. 被引量:1
  • 3CHIRITA PA, NEJDL W,ZAMFIR C. Preventing ShillingAttacks in Online Recommender Systems[C]//Proceedings of the 7th annual ACM InternationalWorkshop on WIDM. [s. 1.] :ACM,2005. 被引量:1
  • 4SU XF, ZENG HJ, CHEN Z. Finding Group Shilling inRecommendation System[C]// International WorldWide Web Conference, Bremen, Germany:[s. n.], 2005:960-961. 被引量:1
  • 5MAH0NY MP, MURLEY NJ, SILVESTREC. Utility-basedNeighborhood Formation for Efficient and RobustCollaborative Filtering. Proceedings of the 5thACM conference on Electronic commerce [C], New York,NY, USA 2004:260-261. 被引量:1
  • 6张强,骆源,翁楚良,李明禄.安全推荐系统中基于信任的检测模型[J].微计算机信息,2010,26(3):68-70. 被引量:1
  • 7M0BASHER B,BURKE R, WILLIAMS C,et al. Analysis andDetection of Segment-focused Attacks AgainstCollaborative Recommendation[J]. Advances in WebMining and Web Usage Analysis, 2006:96—118. 被引量:1
  • 8JOLLIFFE I. Principal Component Analysis[M]. WileyOnline Library, 2005. 被引量:1
  • 9JOLLIFFE, I. Discarding Variables in a PrincipalComponent Analysis. I: Artificial Data[J]. Appl.Stat. 1972,21(02):160 - 173. 被引量:1
  • 10MILLER, BRADLEY N,ALBERT I, et al. MovieLensUnplugged: Experiences with an OccasionallyConnected Recommender System. Proceedings of the8th international conference on Intelligent userinterfaces[C]//[s. 1.]. ACM, 2003:263-266. 被引量:1

二级参考文献34

  • 1王海峰,段友祥,刘仁宁.基于行为分析的病毒检测引擎的改良研究[J].计算机应用,2004,24(B12):109-110. 被引量:12
  • 2刘滨,王世华.Intranet非法站点及不良信息检测系统的设计与实现[J].信息安全与通信保密,2005,27(12):103-106. 被引量:2
  • 3段立娟.Web挖掘的敏感信息过滤模型[J].信息安全与通信保密,2007,29(1):69-71. 被引量:9
  • 4Foster and C. Kesselman "The Grid: Blueprint fora Fulawe Computing Infrastructure" Morgan Kaufmann Publishers, 1999. 被引量:1
  • 5Jonathan L. HerLoeker, Joseph A "An Algorithmic Framework for Performing Collaborative Filtering" Proceedings of lhe 22rid annual international ACM SIGIR conference, Berkeleyl California, 1999. 被引量:1
  • 6John S. Breese, David Heckerman, Carl Kadie. "Empirical Analysis of Predictive Algorithms for Collaborative Filtering" Microsoft Research One Microsoft Way Redmond, May 1998. 被引量:1
  • 7O' Donovan, B Smyth "Trust in Recommender Systems" Proceedings of the lOth international conference on IUI; 2005. 被引量:1
  • 8B Sarwar, G Karypis, J Konstan, J Reidl "hem-Based Collaboralive Fihering Recommendation Algorithm" Proceedings of the 10th international conference on WWW, 2001. 被引量:1
  • 9R Burke, B Mobasher "Identifying Attack Models for Secure Recommendation" Beyond Personalization, 2005. 被引量:1
  • 10R. Burke, B. Mohasher, R. Bhaumik "Limited knowledge shilling attacks in collaborative filtering systems" In Proc. of lhe 3rd LICAI Workshop in Intelligent Techniques for Personalization, Edinburgh, Scotland, August 2005. 被引量:1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部