摘要
Liver segmentation in CT images is an important step for liver volumetry and vascular evaluation in liver pre-surgical planning. In this paper, a segmentation method based on distance regularized level set evolution(DRLSE) model was proposed, which incorporated a distance regularization term into the conventional Chan-Vese (C-V) model. In addition, the region growing method was utilized to generate the initial liver mask for each slice, which could decrease the computation time for level-set propagation. The experimental results show that the method can dramatically decrease the evolving time and keep the accuracy of segmentation. The new method is averagely 15 times faster than the method based on conventional C-V model in segmenting a slice.
Liver segmentation in CT images is an important step for liver volumetry and vascular evaluation in liver pre-surgical planning. In this paper, a segmentation method based on distance regularized level set evolution(DRLSE) model was proposed, which incorporated a distance regularization term into the conventional Chan-Vese (C-V) model. In addition, the region growing method was utilized to generate the initial liver mask for each slice, which could decrease the comlmtatian time for level-set propagation. The experimental results show that the method can dramatically decrease the evolving time and keep the accuracy of segmentation. The new method is averagely 15 times faster than the method based on conventional C-V model in se^nenting a slice.