期刊文献+

具有相同电力控制数与连通控制数的图

Graphs with Equal Power Domination and Connected Domination Numbers
下载PDF
导出
摘要 令G=(V,E)为简单无向图。若中的所有顶点v均被SV所电力控制,称子集S为G的电力控制集。电力控制数γp(G)为G的所有电力控制集基数的最小值。当图G的控制集S的诱导子图G[S]连通时,称S为连通控制集,图G的连通控制数γc(G)为G的所有连通控制集的基数的最小值。讨论了图G的电力控制数和连通控制数,得到了具有相同电力控制数和连通控制数的仙人掌图、块图、立方图的特征。 Let G= (V,E) be a simple undirected graph. A subset S~_C_V is a power dominating set of G if S power dominates all vertices in V. The power domination number, denoted rp(G) , is the minimum cardinality of a power dominating set of G. A dominating set is called a connected dominating set if the induced subgraph GES~ is connected. The connected domination number re(G) of G is the minimum cardinality taken over all minimal connected dominating sets of G. In this paper, we characterize cubic graphs, block graphs and cactus graphs with equal power domi- nation and connected domination numbers.
出处 《上海电机学院学报》 2012年第6期414-417,共4页 Journal of Shanghai Dianji University
基金 国家自然科学基金项目资助(60673048 10471044)
关键词 电力控制数 连通控制数 仙人掌图 块图 立方图 power domination number connected domination number cactus graph~ blockgraph cubic graph
  • 相关文献

参考文献10

  • 1West D B. Introduction to graph theory[M]. 2nd ed. [S.L. l.]:Prentice Hall, Inc, 2001:1-518. 被引量:1
  • 2Sampathkumar E, Walikar H B. The connected do- mination number of a graph[J]. Journal of Mathe matics Physics Science, 1979, 13(6): 607-613. 被引量:1
  • 3Baldwin T L, Mili L, Boisen M B, et al. Power system observability with minimal phasor measure- ment placement[J]. IEEE Transactions Power Sys- tems, 1993, 8(2): 707-715. 被引量:1
  • 4Haynes T W, Hedetniemi S M, Hedetniemi S T, et al. Domination in graphs applied to electric pow- er networks[J]. SIAM Journal on Discrete Mathe- matics, 2002, 15(4): 519-529. 被引量:1
  • 5Zhao Min, Kang Liying, Chang G J. Power domi- nation in graphs[J]. Discrete, Mathematics, 2006, 306(15): 1812-1816. 被引量:1
  • 6Dorfling M, Henning M A. A note on power domi- nation in grid graphs[J]. Discrete Applied Mathe- matics, 2006, 154(6): 1023-1027. 被引量:1
  • 7Kneis J, Molle D, Richter S, et al. Parameterized power domination complexity[J]. Information Pro- cessing Letters, 2006, 98(4): 145-149. 被引量:1
  • 8Aazami A. Domination in graphs with bounded propagation: algorithms, formulations and hard- ness results[J]. Journal of Combinatorial Optimiza- tion, 2010, 19(4): 429-456. 被引量:1
  • 9Arumugam S, Joseph P J. On graphs with equal domination and connected domination numbers[J]. Discrete Mathematics, 1999, 206 (1-3) : 45-49. 被引量:1
  • 10Chen Xuegang, Sun Liang, Xing Huaming. Char- acterization of graphs with equal domination and connected domination numbers[J]. Discrete Mathe- matics, 2004, 289(1-3): 129-135. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部